Second-Order Term of Cover Time for Planar Simple Random Walk

被引:3
作者
Abe, Yoshihiro [1 ]
机构
[1] Chiba Univ, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba, Chiba 2638522, Japan
关键词
Cover time; Two-dimensional discrete torus; Simple random walk; LATE POINTS; INTERLACEMENTS;
D O I
10.1007/s10959-020-01011-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the cover time for a simple random walk on the two-dimensional discrete torus of side length n. Dembo et al. (Ann Math 160:433-464, 2004) identified the leading term in the asymptotics for the cover time as n goes to infinity. In this paper, we study the exact second order term. This is a discrete analogue of the work on the cover time for planar Brownian motion by Belius and Kistler (Probab Theory Relat Fields 167:461-552, 2017).
引用
收藏
页码:1689 / 1747
页数:59
相关论文
共 19 条
  • [1] [Anonymous], 1960, KDAI MATH SEM REP, DOI DOI 10.2996/KMJ/1138844295
  • [2] Tightness for the cover time of the two dimensional sphere
    Belius, David
    Rosen, Jay
    Zeitouni, Ofer
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) : 1357 - 1437
  • [3] Barrier estimates for a critical Galton-Watson process and the cover time of the binary tree
    Belius, David
    Rosen, Jay
    Zeitouni, Ofer
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01): : 127 - 154
  • [4] The subleading order of two dimensional cover times
    Belius, David
    Kistler, Nicola
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) : 461 - 552
  • [5] BRAMSON M, 1983, CONVERGENCE SOLUTION, DOI DOI 10.1090/MEMO/0285
  • [6] THE VACANT SET OF TWO-DIMENSIONAL CRITICAL RANDOM INTERLACEMENT IS INFINITE
    Comets, Francis
    Popov, Serguei
    [J]. ANNALS OF PROBABILITY, 2017, 45 (6B) : 4752 - 4785
  • [7] Two-Dimensional Random Interlacements and Late Points for Random Walks
    Comets, Francis
    Popov, Serguei
    Vachkovskaia, Marina
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (01) : 129 - 164
  • [8] On large deviations for the cover time of two-dimensional torus
    Comets, Francis
    Gallesco, Christophe
    Popov, Serguei
    Vachkovskaia, Marina
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 18
  • [9] Late points for random walks in two dimensions
    Dembo, A
    Peres, Y
    Rosen, J
    Zeitouni, O
    [J]. ANNALS OF PROBABILITY, 2006, 34 (01) : 219 - 263
  • [10] Cover times for Brownian motion and random walks in two dimensions
    Dembo, A
    Peres, Y
    Rosen, J
    Zeitouni, O
    [J]. ANNALS OF MATHEMATICS, 2004, 160 (02) : 433 - 464