Automatic classification of skin lesions using color mathematical morphology-based texture descriptors

被引:7
作者
Gonzalez-Castro, Victor [1 ]
Debayle, Johan [1 ]
Wazaefi, Yanal [2 ]
Rahim, Mehdi [2 ]
Gaudy-Marqueste, Caroline [3 ]
Grob, Jean-Jacques [3 ]
Fertil, Bernard [2 ]
机构
[1] Ecole Natl Super Mines, LGF UMR CNRS 5307, F-42023 St Etienne, France
[2] UMR CNRS 7296, Lab Sci Informat & Syst, Marseille, France
[3] Hop Enfants La Timone, Serv Dermatol, Marseille, France
来源
TWELFTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION | 2015年 / 9534卷
关键词
Melanoma; Color texture description; Mathematical morphology; Color adaptive neighborhoods; Self-organizing maps; ABCD RULE; DERMOSCOPY; DERMATOSCOPY;
D O I
10.1117/12.2182592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper an automatic classification method of skin lesions from dermoscopic images is proposed. This method is based on color texture analysis based both on color mathematical morphology and Kohonen SelfOrganizing Maps (SOM), and it does not need any previous segmentation process. More concretely, mathematical morphology is used to compute a local descriptor for each pixel of the image, while the SOM is used to cluster them and, thus, create the texture descriptor of the global image. Two approaches are proposed, depending on whether the pixel descriptor is computed using classical (i.e. spatially invariant) or adaptive (i.e. spatially variant) mathematical morphology by means of the Color Adaptive Neighborhoods (CANs) framework. Both approaches obtained similar areas under the ROC curve (AUC): 0.854 and 0.859 outperforming the AUC built upon dermatologists' predictions (0.792).
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A mathematical morphology-based multi-level filter of LiDAR data for generating DTMs
    Chen Dong
    Zhang LiQiang
    Wang Zhen
    Deng Hao
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (10) : 1 - 14
  • [42] Processing color and complex data using mathematical morphology
    Wheeler, M
    Zmuda, MA
    PROCEEDINGS OF THE IEEE 2000 NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE: ENGINEERING TOMORROW, 2000, : 618 - 624
  • [43] Texture Image Segmentation using a New Descriptor and Mathematical Morphology
    Yassine, Idrissi Sidi
    Belfkih, Samir
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2013, 10 (02) : 204 - 208
  • [44] Texture primitives description and segmentation using variography and mathematical morphology
    Kourgli, A
    Belhadj-Aissa, A
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 6360 - 6365
  • [45] Automatic Diagnosis of Melanoid Skin Lesions Using Machine Learning Methods
    Grzesiak-Kopec, Katarzyna
    Nowak, Leszek
    Ogorzalek, Maciej
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 577 - 585
  • [46] Multi-Structural Texture Analysis Using Mathematical Morphology
    Yang, Lei
    Asano, Akira
    Li, Liang
    Muraki Asano, Chie
    Kurita, Takio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (10) : 1759 - 1767
  • [47] Evaluation of Color Based Keypoints and Features for the Classification of Melanomas Using the Bag-of-Features Model
    Barata, Catarina
    Marques, Jorge S.
    Rozeira, Jorge
    ADVANCES IN VISUAL COMPUTING, ISVC 2013, PT I, 2013, 8033 : 40 - 49
  • [48] The segmentation of timber defects based on color and the mathematical morphology
    Chen, LiJun
    Wang, KeQi
    Xie, YongHua
    Wang, JinCong
    OPTIK, 2014, 125 (03): : 965 - 967
  • [49] Edge Detection of Color Image Using Mathematical Morphology in HSV Color Space
    Xu, Hui
    Zhang, Yani
    Zhao, Haiyan
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 2112 - 2116
  • [50] Simple mathematical operations based classification of the light color values of the images for skin cell detection.
    Akben, Selahaddin Batuhan
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 : S349 - S353