Automatic classification of skin lesions using color mathematical morphology-based texture descriptors

被引:7
作者
Gonzalez-Castro, Victor [1 ]
Debayle, Johan [1 ]
Wazaefi, Yanal [2 ]
Rahim, Mehdi [2 ]
Gaudy-Marqueste, Caroline [3 ]
Grob, Jean-Jacques [3 ]
Fertil, Bernard [2 ]
机构
[1] Ecole Natl Super Mines, LGF UMR CNRS 5307, F-42023 St Etienne, France
[2] UMR CNRS 7296, Lab Sci Informat & Syst, Marseille, France
[3] Hop Enfants La Timone, Serv Dermatol, Marseille, France
来源
TWELFTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION | 2015年 / 9534卷
关键词
Melanoma; Color texture description; Mathematical morphology; Color adaptive neighborhoods; Self-organizing maps; ABCD RULE; DERMOSCOPY; DERMATOSCOPY;
D O I
10.1117/12.2182592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper an automatic classification method of skin lesions from dermoscopic images is proposed. This method is based on color texture analysis based both on color mathematical morphology and Kohonen SelfOrganizing Maps (SOM), and it does not need any previous segmentation process. More concretely, mathematical morphology is used to compute a local descriptor for each pixel of the image, while the SOM is used to cluster them and, thus, create the texture descriptor of the global image. Two approaches are proposed, depending on whether the pixel descriptor is computed using classical (i.e. spatially invariant) or adaptive (i.e. spatially variant) mathematical morphology by means of the Color Adaptive Neighborhoods (CANs) framework. Both approaches obtained similar areas under the ROC curve (AUC): 0.854 and 0.859 outperforming the AUC built upon dermatologists' predictions (0.792).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Multistep Wind Power Forecast Using Mean Trend Detector and Mathematical Morphology-Based Local Predictor
    Wu, J. L.
    Ji, T. Y.
    Li, M. S.
    Wu, P. Z.
    Wu, Q. H.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (04) : 1216 - 1223
  • [32] Color Adaptive Neighborhood Mathematical Morphology and its application to pixel-level classification
    Gonzalez-Castro, Victor
    Debayle, Johan
    Pinoli, Jean-Charles
    PATTERN RECOGNITION LETTERS, 2014, 47 : 50 - 62
  • [33] Classification of Dermatological Asymmetry of the Skin Lesions Using Pretrained Convolutional Neural Networks
    Beczkowski, Michal
    Borowski, Norbert
    Milczarski, Piotr
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT II, 2021, 12855 : 3 - 14
  • [34] Pigmented Skin Lesions Detection Using Random Forest and Wavelet Based Texture
    Hu, Ping
    Yang, Tie-jun
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VII, 2017, 0024
  • [35] SET OF DESCRIPTORS FOR SKIN CANCER DIAGNOSIS USING NON-DERMOSCOPIC COLOR IMAGES
    Jafari, M. H.
    Samavi, S.
    Soroushmehr, S. M. R.
    Mohaghegh, H.
    Karimi, N.
    Najarian, K.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2638 - 2642
  • [36] SEGMENTATION OF MULTISPECTRAL IMAGES USING MATHEMATICAL MORPHOLOGY AND AUTOMATIC CLASSIFICATION Application to Microscopic Medical Images
    Ghandour, Sarah
    Gonneau, Eric
    Flouzat, Guy
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2009, : 237 - 240
  • [37] Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images
    Oukil, S.
    Kasmi, R.
    Mokrani, K.
    Garcia-Zapirain, B.
    SKIN RESEARCH AND TECHNOLOGY, 2022, 28 (02) : 203 - 211
  • [38] Proposal for a Revised 2-Step Algorithm for the Classification of Lesions of the Skin Using Dermoscopy
    Marghoob, Ashfaq A.
    Braun, Ralph
    ARCHIVES OF DERMATOLOGY, 2010, 146 (04) : 426 - 428
  • [39] A mathematical morphology-based multi-level filter of LiDAR data for generating DTMs
    Dong Chen
    LiQiang Zhang
    Zhen Wang
    Hao Deng
    Science China Information Sciences, 2013, 56 : 1 - 14
  • [40] A mathematical morphology-based multi-level filter of LiDAR data for generating DTMs
    CHEN Dong
    ZHANG LiQiang
    WANG Zhen
    DENG Hao
    Science China(Information Sciences), 2013, 56 (10) : 144 - 157