A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method

被引:8
作者
Zhong, Yu [1 ]
Zhang, Zhongzhan [1 ]
Li, Shoumei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100020, Peoples R China
基金
国家教育部科学基金资助;
关键词
Conditional maximum likelihood estimation; interval-valued data; order constraint; truncated normal distribution; weighted least squares estimation; SAMPLE SELECTION; VARIABLES; CONVERGENCE; SPACE;
D O I
10.1007/s11424-020-9075-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Linear regression models for interval-valued data have been widely studied. Most literatures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center and radius of this interval, and fit two separate real-valued or two dimension linear regression models. This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix, based on a generalized linear model for interval-valued data. A three step estimation method is proposed. Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.
引用
收藏
页码:2048 / 2066
页数:19
相关论文
共 38 条
[11]   A multiple indicators model for volatility using intra-daily data [J].
Engle, RF ;
Gallo, GM .
JOURNAL OF ECONOMETRICS, 2006, 131 (1-2) :3-27
[12]   Interval kernel regression [J].
Fagundes, Roberta A. A. ;
de Souza, Renata M. C. R. ;
Cysneiros, Francisco Jose A. .
NEUROCOMPUTING, 2014, 128 :371-388
[13]   Least squares fitting of an affine function and strength of association for interval-valued data [J].
Gil, MA ;
Lubiano, MA ;
Montenegro, M ;
López, MT .
METRIKA, 2002, 56 (02) :97-111
[14]   Constrained Regression for Interval-Valued Data [J].
Gonzalez-Rivera, Gloria ;
Lin, Wei .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) :473-490
[15]   Constrained center and range joint model for interval-valued symbolic data regression [J].
Hao, Peng ;
Guo, Junpeng .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 116 :106-138
[16]   DUMMY ENDOGENOUS VARIABLES IN A SIMULTANEOUS EQUATION SYSTEM [J].
HECKMAN, JJ .
ECONOMETRICA, 1978, 46 (04) :931-959
[17]   SAMPLE SELECTION BIAS AS A SPECIFICATION ERROR [J].
HECKMAN, JJ .
ECONOMETRICA, 1979, 47 (01) :153-161
[18]  
HECKMAN JJ, 1976, ANN ECON SOC MEAS, V5, P475
[19]   Evaluating forecasting performance for interval data [J].
Hsu, Hui-Li ;
Wu, Berlin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) :2155-2163
[20]  
Lawson C. L., 1974, SOLVING LEAST SQUARE