A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method

被引:8
作者
Zhong, Yu [1 ]
Zhang, Zhongzhan [1 ]
Li, Shoumei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100020, Peoples R China
基金
国家教育部科学基金资助;
关键词
Conditional maximum likelihood estimation; interval-valued data; order constraint; truncated normal distribution; weighted least squares estimation; SAMPLE SELECTION; VARIABLES; CONVERGENCE; SPACE;
D O I
10.1007/s11424-020-9075-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Linear regression models for interval-valued data have been widely studied. Most literatures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center and radius of this interval, and fit two separate real-valued or two dimension linear regression models. This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix, based on a generalized linear model for interval-valued data. A three step estimation method is proposed. Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.
引用
收藏
页码:2048 / 2066
页数:19
相关论文
共 38 条
[1]   REGRESSION-ANALYSIS WHEN DEPENDENT VARIABLE IS TRUNCATED NORMAL [J].
AMEMIYA, T .
ECONOMETRICA, 1973, 41 (06) :997-1016
[2]  
Amemiya T., 1985, Advanced Econometrics
[3]   Testing linear independence in linear models with interval-valued data [J].
Angeles Gil, Maria ;
Gonzalez-Rodriguez, Gil ;
Colubi, Ana ;
Montenegro, Manuel .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) :3002-3015
[4]  
[Anonymous], 1997, Mathematics and its Applications
[5]  
Aubin Jean-Pierre, 1990, Set-Valued Analysis, Systems & Control: Foundations & Applications, DOI 10.1007/978-0-8176-4848-0
[6]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[7]  
Billard L, 2000, ST CLASS DAT ANAL, P369
[8]  
Billard L., 2002, CLASSIFICATION CLUST, P281, DOI [DOI 10.1007/978-3-642-56181-8_31, 10.1007/978-3-642-56181-8_31]
[9]   Estimation of a flexible simple linear model for interval data based on set arithmetic [J].
Blanco-Fernandez, Angela ;
Corral, Norberto ;
Gonzalez-Rodriguez, Gil .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) :2568-2578
[10]   A sequence of improved standard errors under heteroskedasticity of unknown form [J].
Cribari-Neto, Francisco ;
Lima, Maria da Gloria A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) :3617-3627