On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy

被引:22
作者
Antontsev, SN
Shmarev, SI
机构
[1] Universidade da Beira Interior, Covilha
[2] Universidad de Oviedo, Oviedo
关键词
nonlinear elliptic equation; nonhomogeneous degeneracy; localization of solutions;
D O I
10.1007/s11202-005-0076-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work deals with the Dirichlet problem for elliptic equations with nonhomogeneous anisotropic degeneracy in a possibly unbounded domain of multidimensional Euclidean space. The existence of weak solutions is proved. Some conditions are established connecting the character of nonlinearity of the equation and the geometric characteristics of the domain which guarantee the one-dimensional localization (vanishing) of weak solutions. The equation with anisotropic degeneracy is shown to admit localized solutions even in the absence of absorption.
引用
收藏
页码:765 / 782
页数:18
相关论文
共 24 条
[1]  
[Anonymous], T MAT I STEKLOVA
[2]  
[Anonymous], ZAP NAUCHN SEM S PET
[3]  
Antontsev SN, 1996, ENERGY METHODS IN CONTINUUM MECHANICS, P1
[4]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[5]  
ANTONTSEV SN, 2005, IN PRESS T SEM PETRO
[6]  
ANTONTSEV SN, 1983, BOUNDARY VALUE PROBL
[7]  
Antontsev SN, 2002, APPL MECH REV, V48
[8]  
de Marsily G., 1986, QUANTITATIVE HYDROGE
[9]  
Fan X., 2001, J GANSU ED COLL, V15, P1
[10]  
Ivanov AV., 1995, Zeitschrift fur Anal. und ihre Anwendungen, V14, P751, DOI [10.4171/ZAA/650, DOI 10.4171/ZAA/650]