Eradication of chemotherapy-resistant CD44+human ovarian cancer stem cells in mice by intraperitoneal administration of clostridium perfringens enterotoxin

被引:55
作者
Casagrande, Francesca [1 ]
Cocco, Emiliano [1 ]
Bellone, Stefania [1 ]
Richter, Christine E. [1 ]
Bellone, Marta [1 ]
Todeschini, Paola [1 ]
Siegel, Eric [2 ]
Varughese, Joyce [1 ]
Arin-Silasi, Dan [1 ]
Azodi, Masoud [1 ]
Rutherford, Thomas J. [1 ]
Pecorelli, Sergio [3 ]
Schwartz, Peter E. [1 ]
Santin, Alessandro D. [1 ]
机构
[1] Yale Univ, Sch Med, Dept Obstet Gynecol & Reprod Sci, Div Gynecol Oncol, New Haven, CT 06520 USA
[2] Univ Arkansas Med Sci, Dept Biostat, Little Rock, AR 72205 USA
[3] Univ Brescia, Div Gynecol Oncol, Brescia, Italy
基金
美国国家卫生研究院;
关键词
ovarian neoplasms; cancer stem cells; Clostridium perfringens; claudin-3; claudin-4; EXPRESSION; CLAUDIN-4; PROTEINS; THERAPY; TARGET; CD133;
D O I
10.1002/cncr.26215
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND: Emerging evidence has suggested that the capability to sustain tumor formation, growth, and chemotherapy resistance in ovarian as well as other human malignancies exclusively resides in a small proportion of tumor cells termed cancer stem cells. During the characterization of CD44+ ovarian cancer stem cells, we found a high expression of the genes encoding for claudin-4. Because this tight junction protein is the natural high-affinity receptor for Clostridium perfringens enterotoxin (CPE), we have extensively investigated the sensitivity of ovarian cancer stem cells to CPE treatment in vitro and in vivo. METHODS: Real-time polymerase chain reaction and flow cytometry were used to evaluate claudin-3/-4 expression in ovarian cancer stem cells. Small interfering RNA knockdown experiments and MTS assays were used to evaluate CPE-induced cytotoxicity against ovarian cancer stem cell lines in vitro. C.B-17/SCID mice harboring ovarian cancer stem cell xenografts were used to evaluate CPE therapeutic activity in vivo. RESULTS: CD44(+) ovarian cancer stem cells expressed claudin-4 gene at significantly higher levels than matched autologous CD44(+) ovarian cancer cells, and regardless of their higher resistance to chemotherapeutic agents died within 1 hour after exposure to 1.0 mu g/mL of CPE in vitro. Conversely, small-interfering RNA-mediated knockdown of claudin-3/-4 expression in CD44(+) cancer stem cells significantly protected cancer stem cells from CPE-induced cytotoxicity. Importantly, multiple intraperitoneal administrations of sublethal doses of CPE in mice harboring xenografts of chemotherapy-resistant CD44(+) ovarian cancer stem cells had a significant inhibitory effect on tumor progression leading to the cure and/or long-term survival of all treated animals (ie, 100% reduction in tumor burden in 50% of treated mice; P<.0001). CONCLUSIONS: CPE may represent an unconventional, potentially highly effective strategy to eradicate chemotherapy-resistant cancer stem cells. Cancer 2011; 117: 5519-28. (C) 2011 American Cancer Society.
引用
收藏
页码:5519 / 5528
页数:10
相关论文
共 24 条
[1]   Intraperitoneal therapy for stage III ovarian cancer: A therapy whose time has come! [J].
Alberts, DS ;
Markman, M ;
Armstrong, D ;
Rothenberg, ML ;
Muggia, F ;
Howell, SB .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (19) :3944-3946
[2]   Stem-Like Ovarian Cancer Cells Can Serve as Tumor Vascular Progenitors [J].
Alvero, Ayesha B. ;
Fu, Han-Hsuan ;
Holmberg, Jennie ;
Visintin, Irene ;
Mor, Liora ;
Marquina, Carlos Cano ;
Oidtman, Jessica ;
Silasi, Dan-Arin ;
Mor, Gil .
STEM CELLS, 2009, 27 (10) :2405-2413
[3]   Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance [J].
Alvero, Ayesha B. ;
Chen, Rui ;
Fu, Han-Hsuan ;
Montagna, Michele ;
Schwartz, Peter E. ;
Rutherford, Thomas ;
Silasi, Dan-Arin ;
Steffensen, Karina D. ;
Waldstrom, Marianne ;
Visintin, Irene ;
Mor, Gil .
CELL CYCLE, 2009, 8 (01) :158-166
[4]   Epigenetic regulation of CD133 and tumorigenicity of CD133+ovarian cancer cells [J].
Baba, T. ;
Convery, P. A. ;
Matsumura, N. ;
Whitaker, R. S. ;
Kondoh, E. ;
Perry, T. ;
Huang, Z. ;
Bentley, R. C. ;
Mori, S. ;
Fujii, S. ;
Marks, J. R. ;
Berchuck, A. ;
Murphy, S. K. .
ONCOGENE, 2009, 28 (02) :209-218
[5]   Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer [J].
Bapat, SA ;
Mali, AM ;
Koppikar, CB ;
Kurrey, NK .
CANCER RESEARCH, 2005, 65 (08) :3025-3029
[6]  
COPELAND L, 1997, CLIN GYNECOLOGIC ONC, P313
[7]   CD133 Expression Defines a Tumor Initiating Cell Population in Primary Human Ovarian Cancer [J].
Curley, Michael D. ;
Therrien, Vanessa A. ;
Cummings, Christine L. ;
Sergent, Petra A. ;
Koulouris, Carolyn R. ;
Friel, Anne M. ;
Roberts, Drucilla J. ;
Seiden, Michael V. ;
Scadden, David T. ;
Rueda, Bo R. ;
Foster, Rosemary .
STEM CELLS, 2009, 27 (12) :2875-2883
[8]   Tumour stem cells and drug resistance [J].
Dean, M ;
Fojo, T ;
Bates, S .
NATURE REVIEWS CANCER, 2005, 5 (04) :275-284
[9]   Distinct Expression Levels and Patterns of Stem Cell Marker, Aldehyde Dehydrogenase Isoform 1 (ALDH1), in Human Epithelial Cancers [J].
Deng, Shan ;
Yang, Xiaojun ;
Lassus, Heini ;
Liang, Shun ;
Kaur, Sippy ;
Ye, Qunrui ;
Li, Chunsheng ;
Wang, Li-Ping ;
Roby, Katherine F. ;
Orsulic, Sandra ;
Connolly, Denise C. ;
Zhang, Youcheng ;
Montone, Kathleen ;
Butzow, Ralf ;
Coukos, George ;
Zhang, Lin .
PLOS ONE, 2010, 5 (04)
[10]   Metastatic cancer stem cells - A new target for anti-cancer therapy? [J].
Hermann, Patrick C. ;
Huber, Stephan L. ;
Heeschen, Christopher .
CELL CYCLE, 2008, 7 (02) :188-193