Sulfonic and Phosphonic Acid and Bifunctional Organic-Inorganic Hybrid Membranes and Their Proton Conduction Properties

被引:31
作者
Sel, Ozlem [1 ,2 ,3 ]
Azais, Thierry [1 ]
Marechal, Manuel [4 ]
Gebel, Gerard [4 ]
Laberty-Robert, Christel [1 ]
Sanchez, Clement [1 ]
机构
[1] Coll France, LCMCP, CNRS, UMR 7574, F-75231 Paris, France
[2] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
[3] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA
[4] CEA Grenoble, UMR Struct & Proprietes Architectures Mol INAC 58, CEA, UJF,CNRS,SPrAM, F-38054 Grenoble 9, France
关键词
conducting materials; fuel cells; membranes; mesoporous materials; silica; NAFION COMPOSITE MEMBRANES; FUEL-CELL OPERATION; EXCHANGE MEMBRANES; MESOPOROUS SILICA; ELECTROLYTE; STATE; PHOSPHATES;
D O I
10.1002/asia.201100220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hybrid organic-inorganic approaches are used for the synthesis of bifunctional proton exchange membrane fuel cell (PEMFC) membranes owing to their ability to combine the properties of a functionalized inorganic network and an organic thermostable polymer. We report the synthesis of both sulfonic and phosphonic acid functionalized mesostructured silica networks into a poly(vinylidenefluoride-co-hexafluoropropylene) (poly(VDF-co-HFP) copolymer. These membranes, containing different amounts of phosphonic acid and sulfonic acid groups, have been characterized using FTIR and NMR spectroscopy, SA-XRD, SAXS, and electrochemical techniques. The proton conductivity of the bifunctional hybrid membranes depends strongly on hydration, increasing by two orders of magnitude over the relative humidity (RH) range of 20 to 100%, up to a maximum of 0.031 S cm(-1) at 60 degrees C and 100% RH. This value is interesting as only half of the membrane conducts protons. This approach allows the synthesis of a porous SiO2 network with two different functions, having -SO3H and -PO3H2 embedded in a thermostable polymer matrix.
引用
收藏
页码:2992 / 3000
页数:9
相关论文
共 37 条
[31]   Original Fuel-Cell Membranes from Crosslinked Terpolymers via a "Sol-Gel" Strategy [J].
Sel, Ozlem ;
Soules, Aurelien ;
Ameduri, Bruno ;
Boutevin, Bernard ;
Laberty-Robert, Christel ;
Gebel, Gerard ;
Sanchez, Clement .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (07) :1090-1098
[32]   Designing meso- and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT) [J].
Sel, Ozlem ;
Laberty-Robert, Christel ;
Azais, Thierry ;
Sanchez, Clement .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (19) :3733-3741
[33]   Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group:: A progress report [J].
Steininger, H. ;
Schuster, M. ;
Kreuer, K. D. ;
Kaltbeitzel, A. ;
Bingoel, B. ;
Meyer, W. H. ;
Schauff, S. ;
Brunklaus, G. ;
Maier, J. ;
Spiess, H. W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1764-1773
[34]   Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells [J].
Tang, Hao Lin ;
Pan, Mu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30) :11556-11568
[35]  
Valle K., 2006, NAT MATER, V107, P5
[36]   Self-humidifying polymer electrolyte membranes for fuel cells [J].
Watanabe, M ;
Uchida, H ;
Seki, Y ;
Emori, M ;
Stonehart, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3847-3852
[37]   Synthesis and characterization of phosphonic acid functionalized organosilicas with bimodal nanostructure [J].
Yang, QH ;
Yang, J ;
Liu, J ;
Li, Y ;
Li, C .
CHEMISTRY OF MATERIALS, 2005, 17 (11) :3019-3024