ITERATION OF QUADRATIC POLYNOMIALS OVER FINITE FIELDS

被引:10
作者
Heath-Brown, D. R. [1 ]
机构
[1] Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
关键词
D O I
10.1112/S0025579317000328
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a finite field of odd cardinality q, we show that the sequence of iterates of aX(2)+c, starting at 0, always recurs after O(q/loglogq) steps. for X-2+1 the same is true for any starting value. We suggest that the traditional "birthday paradox" model is inappropriate for iterates of X-3+c, when q is 2 mod 3.
引用
收藏
页码:1041 / 1059
页数:19
相关论文
共 5 条
[1]   Forms in many variables and differing degrees [J].
Browning, Tim ;
Heath-Brown, Roger .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (02) :357-394
[2]  
Castelnuovo G., 1889, Atti della Accademia delle Scienze di Torino, V24, P346
[3]   Wreath Products and Proportions of Periodic Points [J].
Juul, Jamie ;
Kurlberg, Par ;
Madhu, Kalyani ;
Tucker, Tom J. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (13) :3944-3969
[4]  
Pollard J. M., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P331, DOI 10.1007/BF01933667
[5]   Polynomial values modulo primes on average and sharpness of the larger sieve [J].
Shao, Xuancheng .
ALGEBRA & NUMBER THEORY, 2015, 9 (10) :2325-2346