Roth's theorem on progressions revisited

被引:58
作者
Bourgain, Jean [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2008年 / 104卷 / 1期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s11854-008-0020-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:155 / 192
页数:38
相关论文
共 8 条
[1]   On triples in arithmetic progression [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (05) :968-984
[2]  
Bourgain J, 1990, ARITHMETIC PROGR SUM, P105
[3]   A polynomial bound in Freiman's theorem [J].
Chang, MC .
DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) :399-419
[4]  
HEATHBROWN DR, 1987, J LOND MATH SOC, V35, P385
[5]  
Roth K F., 1953, J LOND MATH SOC, V28, P104, DOI 10.1112/jlms/s1-28.1.104
[6]  
SANDERS T, IN PRESS COMBIN PROB
[7]   Appendix to 'Roth's theorem on progressions revisited,' by J. Bourgain [J].
Sanders, Tom .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1) :193-206
[8]  
Tao VT, 2006, CAM ST AD M, V105, P1, DOI 10.1017/CBO9780511755149