A novel paclitaxel-loaded poly(D, L-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment

被引:29
作者
Yuan, Xun [1 ]
Ji, Wenxiang [2 ]
Chen, Si [1 ]
Bao, Yuling [3 ]
Tan, Songwei [3 ]
Lu, Shun [2 ]
Wu, Kongming [1 ]
Chu, Qian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Oncol, Tongji Hosp, Tongji Med Coll, 1095 Jiefang Ave, Wuhan 430030, Peoples R China
[2] Shanghai Jiao Tong Univ, Lung Tumor Clin Med Ctr, Shanghai Chest Hosp, Shanghai, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Pharm, Tongji Med Coll, Wuhan, Peoples R China
关键词
poly(D; L-lactide-co-glycolide); Tween; 80; nanoparticle; drug resistance; lung cancer; DRUG-DELIVERY; POLYMERIC NANOPARTICLES; PLGA NANOPARTICLES; TARGETED DELIVERY; TUMOR-CELLS; BARRIERS; STATISTICS; ABSORPTION; INHIBITORS; CHALLENGES;
D O I
10.2147/IJN.S92271
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(D,L-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(D,L-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficiently load PTX and release the drug gradually. There was an increased level of uptake of PLGA-Tween 80 in PTX-resistant lung cancer cell line A549/T, which achieved a significantly higher level of cytotoxicity than both PLGA NP formulation and Taxol (R). The in vivo antitumor efficacy also showed that PLGA-Tween 80 NP was more effective than Taxol (R), indicating that PLGA-Tween 80 copolymer was a promising carrier for PTX in resistant lung cancer.
引用
收藏
页码:2119 / 2131
页数:13
相关论文
共 43 条
[1]  
[Anonymous], INT J PHARM
[2]   D-α-Tocopherol Polyethylene Glycol Succinate-Based Redox-Sensitive Paclitaxel Prodrug for Overcoming Multidrug Resistance in Cancer Cells [J].
Bao, Yuling ;
Guo, Yuanyuan ;
Zhuang, Xiangting ;
Li, Dan ;
Cheng, Bolin ;
Tan, Songwei ;
Zhang, Zhiping .
MOLECULAR PHARMACEUTICS, 2014, 11 (09) :3196-3209
[3]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[4]   A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo [J].
Choi, Ki Young ;
Silvestre, Oscar F. ;
Huang, Xinglu ;
Hida, Naoki ;
Liu, Gang ;
Ho, Don N. ;
Lee, Seulki ;
Lee, Sang Wook ;
Hong, Jong In ;
Chen, Xiaoyuan .
NATURE PROTOCOLS, 2014, 9 (08) :1900-1915
[5]   Nanoparticle-Mediated Systemic Delivery of siRNA for Treatment of Cancers and Viral Infections [J].
Draz, Mohamed Shehata ;
Fang, Binbin Amanda ;
Zhang, Pengfei ;
Hu, Zhi ;
Gu, Shenda ;
Weng, Kevin C. ;
Gray, Joe W. ;
Chen, Fanqing Frank .
THERANOSTICS, 2014, 4 (09) :872-892
[6]   The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation [J].
Eetezadi, Sina ;
Ekdawi, Sandra N. ;
Allen, Christine .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 91 :7-22
[7]  
Feng Si-Shen, 2014, J Control Release, V190, P58
[8]   Tumor-Targeted Paclitaxel Delivery and Enhanced Penetration Using TAT-Decorated Liposomes Comprising Redox-Responsive Poly(Ethylene Glycol) [J].
Fu, Han ;
Shi, Kairong ;
Hu, Guanlian ;
Yang, Yuting ;
Kuang, Qifang ;
Lu, Libao ;
Zhang, Li ;
Chen, Wenfei ;
Dong, Mingling ;
Chen, Yantao ;
He, Qin .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2015, 104 (03) :1160-1173
[9]   Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma [J].
Guo, Yuanyuan ;
Wang, Dong ;
Song, Qingle ;
Wu, Tingting ;
Zhuang, Xiangting ;
Bao, Yuling ;
Kong, Miao ;
Qj, Yan ;
Tan, Songwei ;
Zhang, Zhiping .
ACS NANO, 2015, 9 (07) :6918-6933
[10]   Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers [J].
Jeong, B ;
Bae, YH ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 2000, 63 (1-2) :155-163