The linear sampling method and the MUSIC algorithm

被引:210
作者
Cheney, M [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Lund Univ, Dept Appl Elect, S-22100 Lund, Sweden
关键词
D O I
10.1088/0266-5611/17/4/301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a short tutorial on the MUSIC algorithm (Devaney, Therrien) and the linear sampling method of Kirsch, and explains how the latter is an extension of the former. In particular, for the case of scattering from a finite number of weakly scattering targets, the two algorithms are identical.
引用
收藏
页码:591 / 595
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1992, DISCRETE RANDOM SIGN
[2]  
CHENEY M, IN PRESS SIAM J APPL
[3]  
Devaney A., 2000, Super-resolution processing of multi-static data using time reversal and music
[4]   Characterization of the shape of a scattering obstacle using the spectral data of the far field operator [J].
Kirsch, A .
INVERSE PROBLEMS, 1998, 14 (06) :1489-1512
[5]   Uniqueness for a wave propagation inverse problem in a half-space [J].
Lassas, M ;
Cheney, M ;
Uhlmann, G .
INVERSE PROBLEMS, 1998, 14 (03) :679-684
[6]   Focusing and imaging using eigenfunctions of the scattering operator [J].
Mast, TD ;
Nachman, AI ;
Waag, RC .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (02) :715-725
[7]  
Newton R. G., 1989, INVERSE SCHRODINGER
[8]   THE ITERATIVE TIME-REVERSAL PROCESS - ANALYSIS OF THE CONVERGENCE [J].
PRADA, C ;
THOMAS, JL ;
FINK, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (01) :62-71
[9]   EIGENMODES OF THE TIME-REVERSAL OPERATOR - A SOLUTION TO SELECTIVE FOCUSING IN MULTIPLE-TARGET MEDIA [J].
PRADA, C ;
FINK, M .
WAVE MOTION, 1994, 20 (02) :151-163
[10]   RECOVERY OF THE POTENTIAL FROM FIXED-ENERGY SCATTERING DATA [J].
RAMM, AG .
INVERSE PROBLEMS, 1988, 4 (03) :877-886