Completely rank nonincreasing linear maps on nest algebras

被引:8
作者
Hou, JH
Cui, JL
机构
[1] Shanxi Teachers Univ, Dept Math, Linfen 041004, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
nest algebras; rank; linear maps;
D O I
10.1090/S0002-9939-03-07275-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the completely rank nonincreasing bounded linear maps on nest algebras acting on separable Hilbert spaces are characterized, and an affirmative answer to a problem posed by Hadwin and Larson is given for the case of such nest algebras.
引用
收藏
页码:1419 / 1428
页数:10
相关论文
共 10 条
[1]   Linear preservers on triangular matrices [J].
Chooi, WL ;
Lim, MH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 269 :241-255
[2]   Linear preservers on upper triangular operator matrix algebras [J].
Cui, JL ;
Hou, JC ;
Li, BR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 336 :29-50
[3]  
Davidson K.R., 1988, PITMAN RES NOTES MAT, V191
[4]  
GE L, RANK NONINCREASING L
[5]   Completely rank-nonincreasing linear maps [J].
Hadwin, D ;
Larson, DR .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (01) :210-227
[6]  
Hadwin DW, 1998, OPER THEOR, V104, P139
[7]   Rank-1 preserving linear maps on nest algebras [J].
Hou, JC ;
Cui, JL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 (SUPP.) :263-277
[8]  
HOU JC, 1989, SCI CHINA SER A, V32, P929
[9]  
Molnar L., 1998, LINEAR MULTILINEAR A, V45, P189
[10]  
Wei S., 1998, J OPERAT THEOR, V39, P207