GROUND STATES FOR CHOQUARD EQUATIONS WITH DOUBLY CRITICAL EXPONENTS

被引:14
作者
Li, Xinfu [1 ]
Ma, Shiwang [2 ,3 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Critical Choquard equation; positive solution; Pohozaev identity; ground state solution; radially symmetric; EXISTENCE;
D O I
10.1216/RMJ-2019-49-1-153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an autonomous Choquard equation with doubly critical exponents is studied. By using the Pohozaev constraint and the perturbed method, a positive and radially symmetric ground state solution in H-1 (R-N) is obtained. The result here extends and complements the earlier theorems obtained by Seok [19] and Moroz and Schaftingen [14].
引用
收藏
页码:153 / 170
页数:18
相关论文
共 25 条
[11]   Ground state solution for a class of Schrodinger equations involving general critical growth term [J].
Liu, Jiu ;
Liao, Jia-Feng ;
Tang, Chun-Lei .
NONLINEARITY, 2017, 30 (03) :899-911
[12]   Ground states for quasilinear Schrodinger equations with critical growth [J].
Liu, Xiangqing ;
Liu, Jiaquan ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :641-669
[13]   A guide to the Choquard equation [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) :773-813
[14]  
Moroz V, 2015, T AM MATH SOC, V367, P6557
[15]   Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (02) :153-184
[16]  
Pekar S., 1954, UNTERSUCHUNG ELEKTRO
[17]   On gravity's role in quantum state reduction [J].
Penrose, R .
GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (05) :581-600
[18]   *LINTEGRALE DE RIEMANN-LIOUVILLE ET LE PROBLEME DE CAUCHY [J].
RIESZ, M .
ACTA MATHEMATICA, 1949, 81 (01) :1-218
[19]   Nonlinear Choquard equations: Doubly critical case [J].
Seok, Jinmyoung .
APPLIED MATHEMATICS LETTERS, 2018, 76 :148-156
[20]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162