GROUND STATES FOR CHOQUARD EQUATIONS WITH DOUBLY CRITICAL EXPONENTS

被引:14
作者
Li, Xinfu [1 ]
Ma, Shiwang [2 ,3 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Critical Choquard equation; positive solution; Pohozaev identity; ground state solution; radially symmetric; EXISTENCE;
D O I
10.1216/RMJ-2019-49-1-153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an autonomous Choquard equation with doubly critical exponents is studied. By using the Pohozaev constraint and the perturbed method, a positive and radially symmetric ground state solution in H-1 (R-N) is obtained. The result here extends and complements the earlier theorems obtained by Seok [19] and Moroz and Schaftingen [14].
引用
收藏
页码:153 / 170
页数:18
相关论文
共 25 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]  
[Anonymous], 2007, MEASURE THEORY, DOI DOI 10.1007/978-3-540-34514-5
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]  
Cassani D, 2016, ARXIV161102919
[5]   A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality [J].
Gao, Fashun ;
Yang, Minbo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
[6]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[7]  
Gross E. P., 1996, PHYS MANY PARTICLE S
[8]  
Li X., PREPRINT
[9]  
Lieb E. H., 2001, GRAD STUD MATH, V14
[10]  
LIEB EH, 1977, STUD APPL MATH, V57, P93