Fractional cable models for spiny neuronal dendrites

被引:155
作者
Henry, B. I. [1 ]
Langlands, T. A. M. [1 ]
Wearne, S. L. [2 ]
机构
[1] Univ New S Wales, Sch Math, Dept Appl Math, Sydney, NSW 2052, Australia
[2] Mt Sinai Hosp, Dept Neurosci, Lab Biomath, New York, NY 10029 USA
关键词
D O I
10.1103/PhysRevLett.100.128103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders.
引用
收藏
页数:4
相关论文
共 28 条
[1]  
[Anonymous], BIOPHYSICS COMPUTATI
[2]   PROPAGATION OF DENDRITIC SPIKES MEDIATED BY EXCITABLE SPINES - A CONTINUUM THEORY [J].
BAER, SM ;
RINZEL, J .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 65 (04) :874-890
[3]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[4]   Do thin spines learn to be mushroom spines that remember? [J].
Bourne, Jennifer ;
Harris, Kristen M. .
CURRENT OPINION IN NEUROBIOLOGY, 2007, 17 (03) :381-386
[5]   Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys [J].
Duan, HL ;
Wearne, SL ;
Rocher, AB ;
Macedo, A ;
Morrison, JH ;
Hof, PR .
CEREBRAL CORTEX, 2003, 13 (09) :950-961
[6]   Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving [J].
Heinsalu, E. ;
Patriarca, M. ;
Goychuk, I. ;
Haenggi, P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (12)
[7]   Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations [J].
Henry, B. I. ;
Langlands, T. A. M. ;
Wearne, S. L. .
PHYSICAL REVIEW E, 2006, 74 (03)
[8]  
Jacobs B, 1997, J COMP NEUROL, V386, P661
[9]  
LANGLANDS TAM, IN PRESS
[10]   Fractional Langevin equation [J].
Lutz, E .
PHYSICAL REVIEW E, 2001, 64 (05) :4