Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrodinger equations

被引:113
作者
Gao, Zhen [2 ]
Xie, Shusen [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Ctr Appl Math, Qingdao 266100, Peoples R China
关键词
Schrodinger equation; ADI compact difference scheme; Conservation law; Error estimate; CONVECTION-DIFFUSION PROBLEMS; NUMERICAL-SOLUTION; EVOLUTION-EQUATIONS; ELEMENT-METHOD; SIMULATION; MESH;
D O I
10.1016/j.apnum.2010.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, alternating direction implicit compact finite difference schemes are devised for the numerical solution of two-dimensional Schrodinger equations. The convergence rates of the present schemes are of order O(h(4) + tau(2)). Numerical experiments show that these schemes preserve the conservation laws of charge and energy and achieve the expected convergence rates. Representative simulations show that the proposed schemes are applicable to problems of engineering interest and competitive when compared to other existing procedures. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:593 / 614
页数:22
相关论文
共 47 条
[1]  
[Anonymous], APPL MATH COMPUT
[2]   AN ENGINEERS GUIDE TO SOLITON PHENOMENA - APPLICATION OF THE FINITE-ELEMENT METHOD [J].
ARGYRIS, J ;
HAASE, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :71-122
[3]   Numerically absorbing boundary conditions for quantum evolution equations [J].
Arnold, A .
VLSI DESIGN, 1998, 6 (1-4) :313-319
[4]   Difference schemes for solving the generalized nonlinear Schrodinger equation [J].
Chang, QS ;
Jia, EH ;
Sun, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) :397-415
[5]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[6]   A uniformly convergent alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems [J].
Clavero, C ;
Gracia, JL ;
Jorge, JC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (01) :155-172
[7]   An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (02) :263-280
[8]  
Davydov A.S., 1985, Solitons in Molecular Systems