Levy-type stochastic integrals with regularly varying tails

被引:5
作者
Applebaum, D [1 ]
机构
[1] Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
关键词
Levy measure; Levy-type stochastic integral; predictable mapping; regular variation; semimartingale;
D O I
10.1081/SAP-200056692
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Levy-type stochastic integrals M = (M(t), t >= 0) are obtained by integrating suitable predictable mappings against Brownian motion B and an independent Poisson random measure N. We establish conditions under which teh right tails of M are of regular variation. In particular, we require that the intensity measure associated to N is the product of a regularly varying Levy measure with Lebesgue measure. Both univariate and multivariate versions of the problem are considered.
引用
收藏
页码:595 / 611
页数:17
相关论文
共 21 条
[1]   THE STABLE-LAW MODEL OF STOCK RETURNS [J].
AKGIRAY, V ;
BOOTH, GG .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1988, 6 (01) :51-57
[2]  
Applebaum D., 2004, LEVY PROCESSES STOCH
[3]   Regular variation of GARCH processes [J].
Basrak, B ;
Davis, RA ;
Mikosch, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 99 (01) :95-115
[4]  
Bingham N. H., 1987, Regular Variation
[5]   SUBEXPONENTIALITY AND INFINITE DIVISIBILITY [J].
EMBRECHTS, P ;
GOLDIE, CM ;
VERAVERBEKE, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03) :335-347
[6]   COMPARING THE TAIL OF AN INFINITELY DIVISIBLE DISTRIBUTION WITH INTEGRALS OF ITS LEVY MEASURE [J].
EMBRECHTS, P ;
GOLDIE, CM .
ANNALS OF PROBABILITY, 1981, 9 (03) :468-481
[7]  
Embrechts P., 1980, J AUSTR MATH SOC A, V29, P243, DOI DOI 10.1017/S1446788700021224
[8]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI 10.1007/978-3-642-33483-2
[9]  
Feller W., 1971, An introduction to probability theory and its applications, VII
[10]  
Ikeda N., 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720