Graphs and CCR Algebras

被引:6
作者
Farah, Ilijas [1 ,2 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[2] Inst Matemat, Belgrade, Serbia
基金
加拿大自然科学与工程研究理事会;
关键词
simple nuclear C*-algebras; representations; canonical commutation relations; graphs; PURE STATE-SPACE; HOMOGENEITY;
D O I
10.1512/iumj.2010.59.4144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I introduce yet another way to associate a C*-algebra to a graph and construct a simple nuclear C*-algebra that has irreducible representations both on a separable and a nonseparable Hilbert space.
引用
收藏
页码:1041 / 1056
页数:16
相关论文
共 13 条
[1]   Consistency of a counterexample to Naimark's problem [J].
Akemann, C ;
Weaver, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (20) :7522-7525
[2]  
[Anonymous], APP SET THE IN PRESS
[3]  
[Anonymous], ENCY MATH SCI
[4]  
[Anonymous], E COMMUNICATION 0702
[5]  
Blackadar B., 2006, Operator algebras: theory of C*-algebras and von Neumann algebras
[6]   Nonseparable UHF algebras I: Dixmier's problem [J].
Farah, Ilijas ;
Katsura, Takeshi .
ADVANCES IN MATHEMATICS, 2010, 225 (03) :1399-1430
[7]   Homogeneity of the pure state space for separable C*-algebras [J].
Futamura, H ;
Kataoka, N ;
Kishimoto, A .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (07) :813-845
[8]  
Jiang XH, 1999, AM J MATH, V121, P359
[9]   Homogeneity of the pure state space of a separable C*-algebra [J].
Kishimoto, A ;
Ozawa, N ;
Sakai, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (03) :365-372
[10]  
Kunen K., 1980, Set Theory-An Introduction to Independence Proofs, Studies in logic and the foundations of mathematics, V102