Phases of N=1 quivers in 2+1 dimensions

被引:0
|
作者
Bashmakov, Vladimir [1 ]
Gorini, Nicola [2 ,3 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[2] Univ Milano Bicocca, Dipartimento Fis, Piazza Sci 3, I-20126 Milan, Italy
[3] Ist Nazl Fis Nucl, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2022年 / 07期
基金
欧洲研究理事会;
关键词
Duality in Gauge Field Theories; Supersymmetry and Duality; Topological States of Matter; Chern-Simons Theories;
D O I
10.1007/JHEP07(2022)110
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the IR phases of two-node quiver theories with N = 1 supersymmetry in d = 2 + 1 dimensions. It turns out that the discussion splits into two main cases, depending on whether the Chern-Simons levels associated with the two nodes have the same sign, or the opposite signs, with the latter case being more non-trivial. The determination of the phase diagrams allows us to conjecture certain infrared dualities involving either two quiver theories, or a quiver and adjoint QCD. We also provide a short discussion on quivers possessing time reversal symmetry.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Phases of N=1 theories in 2+1 dimensions
    Bashmakov, Vladimir
    Gomis, Jaume
    Komargodski, Zohar
    Sharon, Adar
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [2] N=1 dualities in 2+1 dimensions
    Benini, Francesco
    Benvenuti, Sergio
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [3] PI/N SCATTERING IN 2+1 DIMENSIONS
    KUDRYAVTSEV, A
    PIETTE, B
    ZAKRZEWSKI, WJ
    PHYSICS LETTERS A, 1993, 180 (1-2) : 119 - 123
  • [4] Projectable Horava Gravity in 2+1 Dimensions: Phases and Flows
    Grosvenor, Kevin T.
    INTERNATIONAL WORKSHOP ON CPT AND LORENTZ SYMMETRY IN FIELD THEORY, 2018, 952
  • [5] Introduction to Topological Phases and Electronic Interactions in (2+1) Dimensions
    Nascimento, Leandro O.
    BRAZILIAN JOURNAL OF PHYSICS, 2017, 47 (02) : 215 - 230
  • [6] Introduction to Topological Phases and Electronic Interactions in (2+1) Dimensions
    Leandro O. Nascimento
    Brazilian Journal of Physics, 2017, 47 : 215 - 230
  • [7] Thermodynamics of O(N) antiferromagnets in 2+1 dimensions
    Hofmann, Christoph P.
    PHYSICAL REVIEW B, 2010, 81 (01)
  • [8] Monopole correlation functions and holographic phases of matter in 2+1 dimensions
    Alho, T.
    Puletti, V. Giangreco M.
    Pourhasan, R.
    Thorlacius, L.
    PHYSICAL REVIEW D, 2016, 94 (10)
  • [9] N=1 QED in 2+1 dimensions: dualities and enhanced symmetries
    Benini, Francesco
    Benvenuti, Sergio
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (05):
  • [10] SU(N) for large N in the Hamiltonian Formalism in 2+1 dimensions
    McKellar, BHJ
    Carlsson, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 420 - 422