Routine determination of ice thickness for cryo-EM grids

被引:100
作者
Rice, William J. [1 ]
Cheng, Anchi [1 ]
Noble, Alex J. [1 ]
Eng, Edward T. [1 ]
Kim, Laura Y. [1 ]
Carragher, Bridget [1 ,2 ]
Potter, Clinton S. [1 ,2 ]
机构
[1] New York Struct Biol Ctr, Natl Resource Automated Mol Microscopy, Simons Electron Microscopy Ctr, New York, NY 10027 USA
[2] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
Cryo-EM; Energy filter; Mean free path; Ice thickness; Inelastic scattering; MEAN FREE-PATH; ENERGY-LOSS SPECTROSCOPY; CRYOELECTRON MICROSCOPY; DATA-ACQUISITION; VITRIFIED ICE; RESOLUTION; TILT; SPOTITON; LEGINON; SYSTEM;
D O I
10.1016/j.jsb.2018.06.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in instrumentation and automation have made cryo-EM a popular method for producing near-atomic resolution structures of a variety of proteins and complexes. Sample preparation is still a limiting factor in collecting high quality data. Thickness of the vitreous ice in which the particles are embedded is one of the many variables that need to be optimized for collection of the highest quality data. Here we present two methods, using either an energy filter or scattering outside the objective aperture, to measure ice thickness for potentially every image collected. Unlike geometrical or tomographic methods, these can be implemented directly in the single particle collection workflow without interrupting or significantly slowing down data collection. We describe the methods as implemented into the Leginon/Appion data collection workflow, along with some examples from test cases. Routine monitoring of ice thickness should prove helpful for optimizing sample preparation, data collection, and data processing.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 38 条
[1]   CRYO-ELECTRON MICROSCOPY OF VIRUSES [J].
ADRIAN, M ;
DUBOCHET, J ;
LEPAULT, J ;
MCDOWALL, AW .
NATURE, 1984, 308 (5954) :32-36
[2]   Elastic and inelastic scattering cross-sections of amorphous layers of carbon and vitrified ice [J].
Angert, I ;
Burmester, C ;
Dinges, C ;
Rose, H ;
Schroder, RR .
ULTRAMICROSCOPY, 1996, 63 (3-4) :181-192
[3]  
Bierhoff M.P.M.D, 2005, CORNELIS SANDER KEES
[4]   Focus: The interface between data collection and data processing in cryo-EM [J].
Biyani, Nikhil ;
Righetto, Ricardo D. ;
McLeod, Robert ;
Caujolle-Bert, Daniel ;
Castano-Diez, Daniel ;
Goldie, Kenneth N. ;
Stahlberg, Henning .
JOURNAL OF STRUCTURAL BIOLOGY, 2017, 198 (02) :124-133
[5]  
BRYDSON R, 2001, ROY MICRO S, V48, P1
[6]   2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy [J].
Campbell, Melody G. ;
Veesler, David ;
Cheng, Anchi ;
Potter, Clinton S. ;
Carragher, Bridget .
ELIFE, 2015, 4 :1-22
[7]   Spotiton: New features and applications [J].
Dandey, Venkata P. ;
Wei, Hui ;
Zhang, Zhening ;
Tan, Yong Zi ;
Acharya, Priyamvada ;
Eng, Edward T. ;
Rice, William J. ;
Kahn, Peter A. ;
Potter, Clinton S. ;
Carragher, Bridget .
JOURNAL OF STRUCTURAL BIOLOGY, 2018, 202 (02) :161-169
[8]   Cryo-EM: beyond the microscope [J].
Earl, Lesley A. ;
Falconieri, Veronica ;
Milne, Jacqueline L. S. ;
Subramaniam, Sriram .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 46 :71-78
[9]   Determination of the inelastic mean free path of electrons in vitrified ice layers for on-line thickness measurements by zero-loss imaging [J].
Feja, B ;
Aebi, U .
JOURNAL OF MICROSCOPY-OXFORD, 1999, 193 :15-19
[10]   A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM [J].
Feng, Xiangsong ;
Fu, Ziao ;
Kaledhonkar, Sandip ;
Jia, Yuan ;
Shah, Binita ;
Jin, Amy ;
Liu, Zheng ;
Sun, Ming ;
Chen, Bo ;
Grassucci, Robert A. ;
Ren, Yukun ;
Jiang, Hongyuan ;
Frank, Joachim ;
Lin, Qiao .
STRUCTURE, 2017, 25 (04) :663-+