Topological properties of Eschenburg spaces and 3-Sasakian manifolds

被引:14
作者
Chinburg, Ted [1 ]
Escher, Christine
Ziller, Wolfgang
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Oregon State Univ, Corvallis, OR 97331 USA
关键词
D O I
10.1007/s00208-007-0102-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine topological properties of the seven-dimensional positively curved Eschenburg biquotients and find many examples which are homeomorphic but not diffeomorphic. A special subfamily of these manifolds also carries a 3-Sasakian metric. Among these we construct a pair of 3-Sasakian spaces which are diffeomorphic to each other, thus giving rise to the first example of a manifold which carries two non-isometric 3-Sasakian metrics.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 20 条
[1]   INFINITE FAMILY OF DISTINCT 7-MANIFOLDS ADMITTING POSITIVELY CURVED RIEMANNIAN STRUCTURES [J].
ALOFF, S ;
WALLACH, NR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :93-97
[2]   On the homotopy type of Eschenburg spaces with positive sectional curvature [J].
Astey, L ;
Micha, E ;
Pastor, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) :3725-3729
[3]   Homeomorphism and diffeomorphism types of Eschenburg spaces [J].
Astey, L ;
Micha, E ;
Pastor, G .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (01) :41-50
[4]  
Boyer C, 1999, J DIFFER GEOM, P123
[5]  
BOYER CP, 1994, J REINE ANGEW MATH, V455, P183
[6]   Curvature properties of the positively curved Eschenburg spaces [J].
Dickinson, WC .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 20 (01) :101-124
[7]  
Eschenburg J.-H., 1992, Diff. Geom. Appl, V2, P123, DOI [10.1016/0926-2245(92)90029-M, DOI 10.1016/0926-2245(92)90029-M]
[8]  
Eschenburg J.H., 1984, SCHRIFTENR MATH I U, V32
[9]   COHOMOLOGY OF BIQUOTIENTS [J].
ESCHENBURG, JH .
MANUSCRIPTA MATHEMATICA, 1992, 75 (02) :151-166
[10]   NEW EXAMPLES OF MANIFOLDS WITH STRICTLY POSITIVE CURVATURE [J].
ESCHENBURG, JH .
INVENTIONES MATHEMATICAE, 1982, 66 (03) :469-480