Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts

被引:51
作者
Engelmann, Yannick [1 ,2 ]
Mehta, Prateek [3 ]
Neyts, Erik C. [1 ,2 ]
Schneider, William F. [3 ]
Bogaerts, Annemie [1 ,2 ]
机构
[1] Univ Antwerp, PLASMA Ctr Excellence, Res Grp PLASMANT, Dept Chem, B-2610 Antwerp, Belgium
[2] Univ Antwerp, NANOLab Ctr Excellence, B-2610 Antwerp, Belgium
[3] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
plasma catalysis; microkinetic modeling; vibrational excitation; radicals; catalyst design; NONTHERMAL PLASMA; HYDROGEN-PRODUCTION; CONVERSION; GAS; PRINCIPLES; OXIDATION; ETHYLENE; REACTOR;
D O I
10.1021/acssuschemeng.0c00906
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The combination of catalysis and nonthermal plasma holds promise for enabling difficult chemical conversions. The possible synergy between both depends strongly on the nature of the reactive plasma species and the catalyst material. In this paper, we show how vibrationally excited species and plasma-generated radicals interact with transition metal catalysts and how changing the catalyst material can improve the conversion rates and product selectivity. We developed a microkinetic model to investigate the impact of vibrational excitations and plasma-generated radicals on the nonoxidative coupling of methane over transition metal surfaces. We predict a significant increase in ethylene formation for vibrationally excited methane. Plasma-generated radicals have a stronger impact on the turnover frequencies with high selectivity toward ethylene on noble catalysts and mixed selectivity on non-noble catalysts. In general, we show how the optimal catalyst material depends on the desired products as well as the plasma conditions.
引用
收藏
页码:6043 / 6054
页数:12
相关论文
共 49 条
[1]   New Trends in Olefin Production [J].
Amghizar, Ismael ;
Vandewalle, Laurien A. ;
Van Geem, Kevin M. ;
Marin, Guy B. .
ENGINEERING, 2017, 3 (02) :171-178
[2]   Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8236-8251
[3]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[4]   Quantifying methane vibrational and rotational temperature with Raman scattering [J].
Butterworth, T. D. ;
Amyay, B. ;
Bekerom, D. V. D. ;
Steeg, A. V. D. ;
Minea, T. ;
Gatti, N. ;
Ong, Q. ;
Richard, C. ;
van Kruijsdijk, C. ;
Smits, J. T. ;
van Bavel, A. P. ;
Boudon, V. ;
van Rooij, G. J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2019, 236
[5]   Equilibrium Constants and Rate Constants for Adsorbates: Two-Dimensional (2D) Ideal Gas, 2D Ideal Lattice Gas, and Ideal Hindered Translator Models [J].
Campbell, Charles T. ;
Sprowl, Lynza H. ;
Arnadottir, Liney .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (19) :10283-10297
[6]   Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects [J].
Chen, Hsin Liang ;
Lee, How Ming ;
Chen, Shiaw Huei ;
Chao, Yu ;
Chang, Moo Been .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 85 (1-2) :1-9
[7]   Fluid Modeling of the Conversion of Methane into Higher Hydrocarbons in an Atmospheric Pressure Dielectric Barrier Discharge [J].
De Bie, Christophe ;
Verheyde, Bert ;
Martens, Tom ;
van Dijk, Jan ;
Paulussen, Sabine ;
Bogaerts, Annemie .
PLASMA PROCESSES AND POLYMERS, 2011, 8 (11) :1033-1058
[8]   High quality diesel via the Fischer-Tropsch process - a review [J].
Dry, ME .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2002, 77 (01) :43-50
[9]   Plasma Thermal Conversion of Methane to Acetylene [J].
Fincke J.R. ;
Anderson R.P. ;
Hyde T. ;
Detering B.A. ;
Wright R. ;
Bewley R.L. ;
Haggard D.C. ;
Swank W.D. .
Plasma Chemistry and Plasma Processing, 2002, 22 (1) :105-136
[10]  
Fridman A, 2008, PLASMA CHEMISTRY, P1, DOI 10.1017/CBO9780511546075