Well-posedness for the fractional Fokker-Planck equations

被引:12
作者
Wei, Jinlong [1 ]
Tian, Rongrong [2 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
LEVY FLIGHTS; DIFFERENTIAL-EQUATIONS; DIFFUSION; FIELDS;
D O I
10.1063/1.4916286
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the fractional Fokker-Planck equation and obtain the existence and uniqueness of weak L-p-solutions (1 <= p <= infinity) under the assumptions that the coefficients are only in Sobolev spaces. Moreover, to L-infinity-solutions, we gain the well-posedness for BV coefficients. Besides, the non-negative weak L-p-solutions and renormalized solutions are derived. After then, we achieve the stability for stationary solutions. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 14 条
[11]   Fractional calculus and continuous-time finance II: the waiting-time distribution [J].
Mainardi, F ;
Raberto, M ;
Gorenflo, R ;
Scalas, E .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) :468-481
[12]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208
[13]   Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Levy stable noises [J].
Schertzer, D ;
Larchevêque, M ;
Duan, J ;
Yanovsky, VV ;
Lovejoy, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :200-212
[14]   Levy anomalous diffusion and fractional Fokker-Planck equation [J].
Yanovsky, VV ;
Chechkin, AV ;
Schertzer, D ;
Tur, AV .
PHYSICA A, 2000, 282 (1-2) :13-34