Well-posedness for the fractional Fokker-Planck equations

被引:12
作者
Wei, Jinlong [1 ]
Tian, Rongrong [2 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
LEVY FLIGHTS; DIFFERENTIAL-EQUATIONS; DIFFUSION; FIELDS;
D O I
10.1063/1.4916286
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the fractional Fokker-Planck equation and obtain the existence and uniqueness of weak L-p-solutions (1 <= p <= infinity) under the assumptions that the coefficients are only in Sobolev spaces. Moreover, to L-infinity-solutions, we gain the well-posedness for BV coefficients. Besides, the non-negative weak L-p-solutions and renormalized solutions are derived. After then, we achieve the stability for stationary solutions. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 14 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[3]   A fractional diffusion equation to describe Levy flights [J].
Chaves, AS .
PHYSICS LETTERS A, 1998, 239 (1-2) :13-16
[4]   Levy flights in a steep potential well [J].
Chechkin, AV ;
Gonchar, VY ;
Klafter, J ;
Metzler, R ;
Tanatarov, LV .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (5-6) :1505-1535
[5]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[6]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[7]  
Hilfer R, 2000, World scientific
[8]   Levy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions [J].
Jespersen, S ;
Metzler, R ;
Fogedby, HC .
PHYSICAL REVIEW E, 1999, 59 (03) :2736-2745
[9]   On the Ito-Wentzell formula for distribution-valued processes and related topics [J].
Krylov, N. V. .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (1-2) :295-319
[10]   A STREAM TUBE MODEL FOR MISCIBLE FLOW .2. MACRODISPERSION IN POROUS-MEDIA WITH LONG-RANGE CORRELATIONS [J].
LENORMAND, R ;
WANG, B .
TRANSPORT IN POROUS MEDIA, 1995, 18 (03) :263-282