Function spaces as Dirichlet spaces

被引:0
|
作者
Jacob, N
Schilling, RL
机构
[1] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Univ Marburg, FB Math 12, D-35032 Marburg, Germany
来源
关键词
Dirichlet space; anisotropic Sobolev space; Slobodeckij norm; negative definite function; Bernstein function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
V. G. Maz'ya and J. Nagel found for certain classes of weighted Sobolev norms (defined using the Fourier transform) equivalent Slobodeckij-type difference representations. We extend these considerations to a wider class of anisotropic norms which arise in the theory of Markov processes. In particular we show that these Sobolev norms are equivalent to Dirichlet norms.
引用
收藏
页码:3 / 28
页数:26
相关论文
共 50 条
  • [31] On the Dirichlet problem in billiard spaces
    Gabor, Grzegorz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 677 - 691
  • [32] Multipliers on Dirichlet Type Spaces
    Peng Yan HU Department of Mathematics. Normal College of Shenzhen University. Shenzhen. Guangdong 518060. P. R. China Ji Huai SHI Department of Mathematics. University of Science and Technology of China. Hefei. Anhui 230026
    ActaMathematicaSinica(EnglishSeries), 2001, 17 (02) : 263 - 272
  • [33] Toeplitz Operators on Dirichlet Spaces
    Yu Feng LU
    Shun Hua SUN Department of Applied Mathematics
    ActaMathematicaSinica(EnglishSeries), 2001, 17 (04) : 643 - 648
  • [34] On the Wandering Property in Dirichlet spaces
    Gallardo-Gutierrez, Eva A.
    Partington, Jonathan R.
    Seco, Daniel
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (02)
  • [35] CAPACITARY INTEGRALS IN DIRICHLET SPACES
    KOLSRUD, T
    MATHEMATICA SCANDINAVICA, 1984, 55 (01) : 95 - 120
  • [36] On Multipliers of Dirichlet Type Spaces
    Guanlong Bao
    Zengjian Lou
    Ruishen Qian
    Hasi Wulan
    Complex Analysis and Operator Theory, 2015, 9 : 1701 - 1732
  • [37] Multipliers between Dirichlet spaces
    Zhijian Wu
    Liming Yang
    Integral Equations and Operator Theory, 1998, 32 : 482 - 492
  • [38] THE LIBERA OPERATOR ON DIRICHLET SPACES
    Bao, G.
    Yang, J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (06) : 1511 - 1517
  • [39] DIRICHLET SPACES AND KAHLERIAN POTENTIALS
    OKADA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (02): : 159 - 161
  • [40] Cyclicity in Dirichlet type spaces
    Kellay, K.
    Le Manach, F.
    Zarrabi, M.
    COMPLEX ANALYSIS AND SPECTRAL THEORY, 2020, 743 : 181 - 193