Numerical treatment of a two-dimensional variable-order fractional nonlinear reaction-diffusion model

被引:0
作者
Liu, Fawang [1 ]
Zhuang, Pinghui [2 ]
Turner, Ian [1 ]
Anh, Vo [1 ]
Burrage, Kevin [1 ,3 ,4 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[4] Univ Oxford, OCISB, Oxford OX1 3QD, England
来源
2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA) | 2014年
关键词
EQUATIONS; APPROXIMATION; CONVERGENCE; STABILITY; TIME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
引用
收藏
页数:6
相关论文
共 27 条
[1]  
[Anonymous], PATTERNS INTERFACES
[2]  
[Anonymous], 1998, NASATP 1998 208415
[3]  
[Anonymous], ANZIAM J ELECT S
[4]  
[Anonymous], FRACTIONAL DIF UNPUB
[5]  
[Anonymous], CENT EUR J PHYS
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]  
[Anonymous], 2013, ANZIAM J, DOI DOI 10.21914/ANZIAMJ.V54I0.6372
[8]   Numerical solutions for fractional reaction-diffusion equations [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) :2212-2226
[9]   Fractional reproduction-dispersal equations and heavy tail dispersal kernels [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (07) :2281-2297
[10]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954