NONNEGATIVE SOLUTIONS OF AN INDEFINITE SUBLINEAR ROBIN PROBLEM II: LOCAL AND GLOBAL EXACTNESS RESULTS

被引:2
作者
Kaufmann, Uriel [1 ]
Ramos Quoirin, Humberto [1 ]
Umezu, Kenichiro [2 ]
机构
[1] Univ Nacl Cordoba, FaMAF CIEM CONICET, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
[2] Ibaraki Univ, Fac Educ, Dept Math, Mito, Ibaraki 3108512, Japan
基金
日本学术振兴会;
关键词
EIGENVALUE; BIFURCATION; EQUATIONS; WEIGHT;
D O I
10.1007/s11856-021-2278-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We proceed further in the investigation of the Robin problem (P-alpha) {-Delta u = a(x)uq in Omega, u >= 0 in Omega, partial derivative(v)u = alpha u on partial derivative Omega, on a smooth bounded domain Omega subset of R-N, with a sign-changing and 0< q< 1. Assuming the existence of a positive solution for alpha = 0 (which holds if q is close enough to 1), we sharpen the description of the nontrivial solution set of (P-alpha) for alpha > 0. Moreover, strengthening the assumptions on a and q we provide a global (i.e., for every alpha > 0) exactness result on the number of solutions of (P-alpha). Our approach also applies to the problem (S alpha) {-Delta u = alpha(u) + a(x)u(q) in Omega, u >= 0 in Omega, partial derivative(v)u = alpha u on partial derivative Omega,
引用
收藏
页码:661 / 696
页数:36
相关论文
共 18 条
[1]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[2]  
Alama, 1999, ADV DIFFERENTIAL EQU, V4, P813, DOI DOI 10.57262/ADE/1366030748
[3]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[4]  
Amann H., 1976, N HOLLAND MATH STUDI, P43, DOI 10.1016/S0304-0208(08)71154-X
[5]   EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR NEUMANN PROBLEMS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
MATHEMATISCHE ZEITSCHRIFT, 1988, 199 (02) :257-278
[6]   An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition [J].
Chabrowski, Jan ;
Tintarev, Cyril .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (04) :519-540
[7]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[8]   Positivity results for indefinite sublinear elliptic problems via a continuity argument [J].
Kaufmann, U. ;
Ramos Quoirin, H. ;
Umezu, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (08) :4481-4502
[9]   Nonnegative solutions of an indefinite sublinear Robin problem I: positivity, exact multiplicity, and existence of a subcontinuum [J].
Kaufmann, Uriel ;
Ramos Quoirin, Humberto ;
Umezu, Kenichiro .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (05) :2015-2038
[10]   Positive solutions of an elliptic Neumann problem with a sublinear indefinite nonlinearity [J].
Kaufmann, Uriel ;
Ramos Quoirin, Humberto ;
Umezu, Kenichiro .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (02)