Stargazin (TARP γ-2) Is Required for Compartment-Specific AMPA Receptor Trafficking and Synaptic Plasticity in Cerebellar Stellate Cells

被引:52
作者
Jackson, Alexander C. [1 ]
Nicoll, Roger A. [1 ,2 ]
机构
[1] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA
关键词
CALCIUM-PERMEABLE AMPA; LONG-TERM DEPRESSION; NEOCORTICAL PYRAMIDAL NEURONS; MUTANT MOUSE STARGAZER; 2 DISTINCT MECHANISMS; SUBUNIT COMPOSITION; GLUTAMATE RECEPTORS; AUXILIARY SUBUNITS; CA2+ PERMEABILITY; POLYAMINE TOXINS;
D O I
10.1523/JNEUROSCI.5134-10.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the cerebellar cortex, parallel fiber-to-stellate cell (PF-SC) synapses exhibit a form of synaptic plasticity manifested as a switch in the subunit composition of synaptic AMPA receptors (AMPARs) from calcium-permeable, GluA2-lacking to calcium-impermeable, GluA2-containing receptors. Here, we examine the role of stargazin (gamma-2), canonical member of the transmembrane AMPAR regulatory protein (TARP) family, in the regulation of GluA2-lacking AMPARs and synaptic plasticity in SCs from epileptic and ataxic stargazer mutant mice. We found that AMPAR-mediated synaptic transmission is severely diminished in stargazer SCs, and that the rectification index (RI) of AMPAR current is reduced. Activity-dependent plasticity in the rectification of synaptic AMPARs is also impaired in stargazer SCs. Despite the dramatic loss in synaptic AMPARs, extrasynaptic AMPARs are preserved. We then examined the role of stargazin in regulating the rectification of extrasynaptic AMPARs in nucleated patches and found, in contrast to previous reports, that wild-type extrasynaptic AMPARs have moderate RI values (average RI = 0.38), while those in stargazer SCs are low (average RI = 0.24). The GluA2-lacking AMPAR blocker, philanthotoxin-433 (PhTx-433), was used as an alternative measure of GluA2 content in wild-type and stargazer SCs. Despite the difference in RI, PhTx-433 sensitivity of both synaptic and extrasynaptic AMPARs remains unchanged, suggesting that the dramatic changes in RI and the impairment in synaptic plasticity observed in the stargazer mouse are not the result of a specific impairment in GluA2 trafficking. Together, these data suggest that stargazin regulates compartment-specific AMPAR trafficking, as well as activity-dependent plasticity in synaptic AMPAR rectification at cerebellar PF-SC synapses.
引用
收藏
页码:3939 / 3952
页数:14
相关论文
共 87 条
[1]   Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation [J].
Adesnik, Hillel ;
Nicoll, Roger A. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (17) :4598-4602
[2]   Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines [J].
Aizenman, CD ;
Muñoz-Elías, G ;
Cline, HT .
NEURON, 2002, 34 (04) :623-634
[3]  
Atluri PP, 1998, J NEUROSCI, V18, P8214
[4]   Local interneurons regulate synaptic strength by retrograde release of endocannabinoids [J].
Beierlein, Michael ;
Regehr, Wade G. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (39) :9935-9943
[5]   Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression [J].
Bellone, C ;
Lüscher, C .
NATURE NEUROSCIENCE, 2006, 9 (05) :636-641
[6]   mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors [J].
Bellone, C ;
Lüscher, C .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2005, 21 (05) :1280-1288
[7]   A SINGLE AMINO-ACID DETERMINES THE SUBUNIT-SPECIFIC SPIDER TOXIN BLOCK OF ALPHA-AMINO-3-HYDROXY-5-METHYLISOXAZOLE-4-PROPIONATE KAINATE RECEPTOR CHANNELS [J].
BLASCHKE, M ;
KELLER, BU ;
RIVOSECCHI, R ;
HOLLMANN, M ;
HEINEMANN, S ;
KONNERTH, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (14) :6528-6532
[8]   SUBUNIT COMPOSITION AT THE SINGLE-CELL LEVEL EXPLAINS FUNCTIONAL-PROPERTIES OF A GLUTAMATE-GATED CHANNEL [J].
BOCHET, P ;
AUDINAT, E ;
LAMBOLEZ, B ;
CREPEL, F ;
ROSSIER, J ;
IINO, M ;
TSUZUKI, K ;
OZAWA, S .
NEURON, 1994, 12 (02) :383-388
[9]   INWARD RECTIFICATION OF BOTH AMPA AND KAINATE SUBTYPE GLUTAMATE RECEPTORS GENERATED BY POLYAMINE-MEDIATED ION-CHANNEL BLOCK [J].
BOWIE, D ;
MAYER, ML .
NEURON, 1995, 15 (02) :453-462
[10]  
BRACKLEY PTH, 1993, J PHARMACOL EXP THER, V266, P1573