Critical domain walls in the Ashkin-Teller model

被引:6
作者
Caselle, M. [1 ,2 ]
Lottini, S. [3 ]
Rajabpour, M. A. [4 ,5 ]
机构
[1] Univ Torino, Dipartimento Fis Teor, I-10125 Turin, Italy
[2] Univ Torino, Ist Nazl Fis Nucl, I-10125 Turin, Italy
[3] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany
[4] SISSA, I-34136 Trieste, Italy
[5] INFN, Sez Trieste, I-34136 Trieste, Italy
关键词
classical Monte Carlo simulations; fractal growth (theory); interfaces in random media (theory); QUANTUM CHAIN; SLE;
D O I
10.1088/1742-5468/2011/02/P02039
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the fractal properties of interfaces in the 2d Ashkin-Teller model. The fractal dimension of the symmetric interfaces is calculated along the critical line of the model in the interval between the Ising and the four-states Potts models. Using Schramm's formula for crossing probabilities we show that such interfaces cannot be related to the simple SLE kappa, except for the Ising point. The same calculation on non-symmetric interfaces is performed in the four-states Potts model: the fractal dimension is compatible with the result coming from Schramm's formula, and we expect a simple SLE kappa in this case.
引用
收藏
页数:13
相关论文
共 37 条
[1]   Fractal dimensions of the Q-state Potts model for complete and external hulls [J].
Adams, David A. ;
Sander, Leonard M. ;
Ziff, Robert M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[2]   Fractal dimensions and corrections to scaling for critical Potts clusters [J].
Aharony, A ;
Asikainen, J .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 :3-7
[3]   Statistics of two-dimensional lattices with four components [J].
Ashkin, J ;
Teller, E .
PHYSICAL REVIEW, 1943, 64 (5/6) :178-184
[4]   Fractal geometry of critical Potts clusters [J].
Asikainen, J ;
Aharony, A ;
Mandelbrot, BB ;
Rausch, E ;
Hovi, JP .
EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (04) :479-487
[5]   OPERATOR CONTENT OF THE ASHKIN-TELLER QUANTUM CHAIN - SUPERCONFORMAL AND ZAMOLODCHIKOV-FATEEV INVARIANCE - .1. FREE-BOUNDARY CONDITIONS [J].
BAAKE, M ;
VONGEHLEN, G ;
RITTENBERG, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08) :L479-L485
[6]   PHASE-DIAGRAM OF SELENIUM ADSORBED ON THE NI(100) SURFACE - A PHYSICAL REALIZATION OF THE ASHKIN-TELLER MODEL [J].
BAK, P ;
KLEBAN, P ;
UNERTL, WN ;
OCHAB, J ;
AKINCI, G ;
BARTELT, NC ;
EINSTEIN, TL .
PHYSICAL REVIEW LETTERS, 1985, 54 (14) :1539-1542
[7]   2D growth processes: SLE and Loewner chains [J].
Bauer, Michel ;
Bernard, Denis .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 432 (3-4) :115-221
[8]  
BAXTER RJ, 1982, EXACTLY SOLVED MODEL, P471
[9]   Possible description of domain walls in two-dimensional spin glasses by stochastic Loewner evolutions [J].
Bernard, Denis ;
Le Doussal, Pierre ;
Middleton, A. Alan .
PHYSICAL REVIEW B, 2007, 76 (02)
[10]   SLE for theoretical physicists [J].
Cardy, J .
ANNALS OF PHYSICS, 2005, 318 (01) :81-118