Fractal propagation method enables realistic optical microscopy simulations in biological tissues

被引:45
作者
Glaser, Adam K. [1 ]
Chen, Ye [1 ]
Liu, Jonathan T. C. [1 ]
机构
[1] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
关键词
MONTE-CARLO; LIGHT-SCATTERING; REFRACTIVE-INDEX; BORN APPROXIMATION; BEAMS; CELLS; COMPUTATION; TOMOGRAPHY; MEDIA; MODEL;
D O I
10.1364/OPTICA.3.000861
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique that combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the method's flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy. (C) 2016 Optical Society of America
引用
收藏
页码:861 / 869
页数:9
相关论文
共 58 条
[1]  
Andrews L. C., 2005, SPIE, V2nd, DOI DOI 10.1117/3.626196
[2]  
Baish JW, 2000, CANCER RES, V60, P3683
[3]   The spatial variation of the refractive index in biological cells [J].
Beuthan, J ;
Minet, O ;
Helfmann, J ;
Herrig, M ;
Muller, G .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (03) :369-382
[4]  
Capoglu I. R., 2009, ANT PROP SOC INT S
[5]   Angora: A Free Software Package for Finite-Difference Time-Domain Electromagnetic Simulation [J].
Capoglu, Ilker R. ;
Taflove, Allen ;
Backman, Vadim .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2013, 55 (04) :80-93
[6]   Computation of tightly-focused laser beams in the FDTD method [J].
Capoglu, Ilker R. ;
Taflove, Allen ;
Backman, Vadim .
OPTICS EXPRESS, 2013, 21 (01) :87-101
[7]  
Çapoglu IR, 2009, OPT LETT, V34, P2679, DOI 10.1364/OL.34.002679
[8]   Cell refractive index tomography by digital holographic microscopy [J].
Charrière, F ;
Marian, A ;
Montfort, F ;
Kuehn, J ;
Colomb, T ;
Cuche, E ;
Marquet, P ;
Depeursinge, C .
OPTICS LETTERS, 2006, 31 (02) :178-180
[9]   Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution [J].
Chen, Bi-Chang ;
Legant, Wesley R. ;
Wang, Kai ;
Shao, Lin ;
Milkie, Daniel E. ;
Davidson, Michael W. ;
Janetopoulos, Chris ;
Wu, Xufeng S. ;
Hammer, John A., III ;
Liu, Zhe ;
English, Brian P. ;
Mimori-Kiyosue, Yuko ;
Romero, Daniel P. ;
Ritter, Alex T. ;
Lippincott-Schwartz, Jennifer ;
Fritz-Laylin, Lillian ;
Mullins, R. Dyche ;
Mitchell, Diana M. ;
Bembenek, Joshua N. ;
Reymann, Anne-Cecile ;
Boehme, Ralph ;
Grill, Stephan W. ;
Wang, Jennifer T. ;
Seydoux, Geraldine ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Betzig, Eric .
SCIENCE, 2014, 346 (6208) :439-+
[10]   Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency [J].
Chen, Jin ;
Intes, Xavier .
MEDICAL PHYSICS, 2011, 38 (10) :5788-5798