Overcoming corner singularities using multigrid methods

被引:10
作者
Brenner, SC [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
multigrid; singularities; singular function representation;
D O I
10.1137/S0036142996308022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Poisson equation -Delta u = f with homogeneous Dirichlet boundary condition on a two-dimensional polygonal domain Omega. We develop a finite element multigrid method on quasi-uniform grids that obtains O(h(m+1?epsilon)) convergence in the H-1 (Omega) norm for any positive O epsilon when f is an element of H-m (Omega). The cost of the method is proportional to the number of elements in the triangulation. The results of this paper can be generalized to other equations and other boundary conditions.
引用
收藏
页码:1883 / 1892
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1994, DEGRUYTER EXPOSITION
[2]   THE POST-PROCESSING APPROACH IN THE FINITE-ELEMENT METHOD .2. THE CALCULATION OF STRESS INTENSITY FACTORS [J].
BABUSKA, I ;
MILLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1984, 20 (06) :1111-1129
[3]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[4]  
Birman M. S., 1962, IZV VYSSH UCHEBN ZAV, V5, P11
[5]   ON FINITE-ELEMENT METHODS FOR ELLIPTIC-EQUATIONS ON DOMAINS WITH CORNERS [J].
BLUM, H ;
DOBROWOLSKI, M .
COMPUTING, 1982, 28 (01) :53-63
[6]   COEFFICIENTS OF THE SINGULARITIES FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS ON DOMAINS WITH CONICAL POINTS .3. FINITE-ELEMENT METHODS ON POLYGONAL DOMAINS [J].
BOURLARD, M ;
DAUGE, M ;
LUBUMA, MS ;
NICAISE, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :136-155
[7]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[8]   NEW ESTIMATES FOR MULTILEVEL ALGORITHMS INCLUDING THE V-CYCLE [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1993, 60 (202) :447-471
[9]  
BRAMBLE JH, 1994, CONT MATH, V157, P17
[10]  
Brenner S. C., 2007, Texts Appl. Math., V15