Nonlinear Roth type theorems in finite fields

被引:18
作者
Bourgain, J. [1 ]
Chang, M. -C. [2 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
SUMS;
D O I
10.1007/s11856-017-1577-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain smoothing estimates for certain nonlinear convolution operators on prime fields, leading to quantitative nonlinear Roth type theorems. For instance, we produce triplets x, x + y, x + y (2) and x, x + y, x + in proportional subsets of F (p) . Compared with the usual linear setting (i.e. arithmetic progressions), the nonlinear nature of the operators leads to different phenomena, both qualitatively and quantitatively. The methods used are purely analytical.
引用
收藏
页码:853 / 867
页数:15
相关论文
共 8 条
[2]   ON EXPONENTIAL SUMS IN FINITE FIELDS [J].
BOMBIERI, E .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :71-&
[3]   A NONLINEAR VERSION OF ROTHS THEOREM FOR SETS OF POSITIVE DENSITY IN THE REAL LINE [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1988, 50 :169-181
[4]   A Transference Approach to a Roth-Type Theorem in the Squares [J].
Browning, T. D. ;
Prendiville, S. M. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (07) :2219-2248
[5]   A study in sums of products [J].
Fouvry, Etienne ;
Kowalski, Emmanuel ;
Michel, Philippe .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2040)
[6]   Polynomial averages converge to the product of integrals [J].
Frantzikinakis, N ;
Kra, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) :267-276
[7]   Convergence of polynomial ergodic averages [J].
Host, B ;
Kra, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 149 (1) :1-19
[8]  
Iwaniec H., 2004, Colloquium Publications