Average number of zeros and mixed symplectic volume of Finsler sets

被引:4
作者
Akhiezer, Dmitri [1 ]
Kazarnovskii, Boris [1 ]
机构
[1] Inst Informat Transmiss Problems, 19 B Karetny Per, Moscow 127994, Russia
基金
俄罗斯科学基金会;
关键词
Alexandrov-Fenchel inequalities; Crofton formula; k-Density; Mixed volume; 52A39; 53C30; 58A05; CROFTON FORMULAS; CONVEX-BODIES; VALUATIONS; TRANSFORMS;
D O I
10.1007/s00039-018-0464-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an n-dimensional manifold and is equal to the mixed symplectic volume of these Finsler ellipsoids. If X is a homogeneous space of a compact Lie group and all vector spaces V-i together with their Euclidean metrics are invariant, then the average numbers of zeros satisfy the inequalities, similar to Hodge inequalities for intersection numbers of divisors on a projective variety. This is applied to the eigenspaces of Laplace operator of an invariant Riemannian metric. The proofs are based on a construction of the ring of normal densities on X, an analogue of the ring of differential forms. In particular, this construction is used to carry over the Crofton formula to the product of spheres.
引用
收藏
页码:1517 / 1547
页数:31
相关论文
共 28 条
[1]   On common zeros of eigenfunctions of the Laplace operator [J].
Akhiezer, Dmitri ;
Kazarnovskii, Boris .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (01) :105-111
[2]  
[Ахиезер Дмитрий Наумович Akhiezer Dmitri Naumovich], 2017, [Труды Московского математического общества, Trudy Moskovskogo matematicheskogo obshchestva], V78, P145
[3]   Range characterization of the cosine transform on higher Grassmannians [J].
Alesker, S ;
Bernstein, J .
ADVANCES IN MATHEMATICS, 2004, 184 (02) :367-379
[4]   Theory of valuations on manifolds: A survey [J].
Alesker, Semyon .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (04) :1321-1341
[5]   A fourier-type transform on translation-invariant valuations on convex sets [J].
Alesker, Semyon .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 181 (01) :189-294
[6]  
[Anonymous], 1953, Methods of mathematical physics
[7]  
[Anonymous], MAT SBORNIK
[8]  
Arnold Vladimir I., 2005, Arnold's Problems
[9]   Valuations with Crofton formula and Finsler geometry [J].
Bernig, Andreas .
ADVANCES IN MATHEMATICS, 2007, 210 (02) :733-753
[10]  
Bernstein D. N., 1975, FUNCT ANAL APPL, V9, P95