Warm dense matter created by isochoric laser heating

被引:35
作者
Ping, Y. [1 ]
Correa, A. A. [1 ]
Ogitsu, T. [1 ]
Draeger, E. [1 ]
Schwegler, E. [1 ]
Ao, T. [2 ]
Widmann, K. [1 ]
Price, D. F. [1 ]
Lee, E. [2 ]
Tam, H. [2 ]
Springer, P. T. [1 ]
Hanson, D. [2 ]
Koslow, I. [2 ]
Prendergast, D. [3 ]
Collins, G. [1 ]
Ng, A. [1 ,2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA USA
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Warm dense matter; Isochoric heating; Short pulse laser; INDUCED ELECTRON-EMISSION; PICOSECOND PULSES; METAL-SURFACES; WORK FUNCTION; PHOTOEMISSION; MULTIPHOTON; CONDUCTION; EQUATION; STATE; AU;
D O I
10.1016/j.hedp.2009.12.009
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Warm Dense Matter (WDM) physics has been a growing field of high energy density physics, driven by the fundamental urge to understand the convergence between plasma and condensed matter physics, and the practical need to understand dynamic behavior of materials under extreme conditions. A platform for creating and probing WDM by isochoric heating of free-standing nano-foils has been developed recently to study the non-equilibrium processes. Results of optical measurements reveal the existence of a quasi-steady state in the time history, during which the interband component of the dielectric function shows both enhancement and a red shift. First-principles calculations of the dielectric function suggest that the enhanced red shift of the interband transition peak might be explained by a positive charge state of the gold foil due to ejection of electrons by the high intensity laser pulse. The impact on optical properties by the formation of an electronic sheath was examined by the Thomas-Fermi theory with local equilibrium approximation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 257
页数:12
相关论文
共 66 条
[1]   OBSERVATION OF SURFACE-ENHANCED MULTIPHOTON PHOTOEMISSION FROM METAL-SURFACES IN THE SHORT-PULSE LIMIT [J].
AESCHLIMANN, M ;
SCHMUTTENMAER, CA ;
ELSAYEDALI, HE ;
MILLER, RJD ;
CAO, J ;
GAO, Y ;
MANTELL, DA .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (21) :8606-8613
[2]   WORK FUNCTION OF GOLD [J].
ANDERSON, PA .
PHYSICAL REVIEW, 1959, 115 (03) :553-554
[3]  
Anisimov S. I., 1974, SOV PHYS JETP, V39, P375, DOI DOI 10.1016/J.JMATPROTEC.2009.05.031
[4]   Optical properties in nonequilibrium phase transitions [J].
Ao, T ;
Ping, Y ;
Widmann, K ;
Price, DF ;
Lee, E ;
Tam, H ;
Springer, PT ;
Ng, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[5]   Observation of light-phase-sensitive photoemission from a metal [J].
Apolonski, A ;
Dombi, P ;
Paulus, GG ;
Kakehata, M ;
Holzwarth, R ;
Udem, T ;
Lemell, C ;
Torizuka, K ;
Burgdörfer, J ;
Hänsch, TW ;
Krausz, F .
PHYSICAL REVIEW LETTERS, 2004, 92 (07)
[6]   Experimental evidence of above-threshold photoemission in solids [J].
Banfi, F ;
Giannetti, C ;
Ferrini, G ;
Galimberti, G ;
Pagliara, S ;
Fausti, D ;
Parmigiani, F .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)
[7]   Anomalous photoemission from Ag(100) in the femtosecond regime [J].
Banfi, G ;
Ferrini, G ;
Peloi, M ;
Parmigiani, F .
PHYSICAL REVIEW B, 2003, 67 (03)
[8]   Observation of high energy photoelectrons from solids at moderate laser intensity [J].
Belsky, AN ;
Bachau, H ;
Gaudin, J ;
Geoffroy, G ;
Guizard, S ;
Martin, P ;
Petite, G ;
Philippov, A ;
Vasil'ev, AN ;
Yatsenko, BN .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (7-8) :989-994
[9]   Calculation of optical absorption in Al across the solid-to-liquid transition [J].
Benedict, LX ;
Klepeis, JE ;
Streitz, FH .
PHYSICAL REVIEW B, 2005, 71 (06)
[10]  
Born M., 1980, Principles of Optics, V6th