A minimal computational model for three-dimensional cell migration

被引:17
作者
Cao, Yuansheng [1 ]
Ghabache, Elisabeth [1 ]
Miao, Yuchuan [5 ]
Niman, Cassandra [2 ]
Hakozaki, Hiroyuki [3 ]
Reck-Peterson, Samara L. [4 ,6 ]
Devreotes, Peter N. [7 ]
Rappel, Wouter-Jan [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Natl Ctr Microscopy & Imaging Res, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Cellular & Mol Med, Div Biol Sci, La Jolla, CA 92093 USA
[5] Johns Hopkins Univ, Sch Med, Dept Biol Chem, Baltimore, MD 21205 USA
[6] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
[7] Johns Hopkins Univ, Dept Cell Biol, Baltimore, MD USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
cell migration; computational modelling; Dictyostelium; migration mode; SIGNAL-TRANSDUCTION; SELF-POLARIZATION; MOTILITY; CHEMOTAXIS; INHIBITION; LOCOMOTION; MECHANISMS; WAVES;
D O I
10.1098/rsif.2019.0619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During migration, eukaryotic cells can continuously change their three-dimensional morphology, resulting in a highly dynamic and complex process. Further complicating this process is the observation that the same cell type can rapidly switch between different modes of migration. Modelling this complexity necessitates models that are able to track deforming membranes and that can capture the intracellular dynamics responsible for changes in migration modes. Here we develop an efficient three-dimensional computational model for cell migration, which couples cell mechanics to a simple intracellular activator-inhibitor signalling system. We compare the computational results to quantitative experiments using the social amoeba Dictyostelium discoideum. The model can reproduce the observed migration modes generated by varying either mechanical or biochemical model parameters and suggests a coupling between the substrate and the biomechanics of the cell.
引用
收藏
页数:10
相关论文
共 58 条
[1]   Cell Migration with Multiple Pseudopodia: Temporal and Spatial Sensing Models [J].
Allena, Rachele .
BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (02) :288-316
[2]   Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells [J].
Alonso, Sergio ;
Stange, Mai Ke ;
Beta, Carsten .
PLOS ONE, 2018, 13 (08)
[3]   Keratocyte-like locomotion in amiB-null Dictyostelium cells [J].
Asano, Y ;
Mizuno, T ;
Kon, T ;
Nagasaki, A ;
Sutoh, K ;
Uyeda, TQP .
CELL MOTILITY AND THE CYTOSKELETON, 2004, 59 (01) :17-27
[4]   Correlated Waves of Actin Filaments and PIP3 in Dictyostelium Cells [J].
Asano, Yukako ;
Nagasaki, Akira ;
Uyeda, Taro Q. P. .
CELL MOTILITY AND THE CYTOSKELETON, 2008, 65 (12) :923-934
[5]   A chemical compass [J].
Bourne, HR ;
Weiner, O .
NATURE, 2002, 419 (6902) :21-21
[6]   Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry [J].
Camley, Brian A. ;
Zhao, Yanxiang ;
Li, Bo ;
Levine, Herbert ;
Rappel, Wouter-Jan .
PHYSICAL REVIEW E, 2017, 95 (01)
[7]   Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns [J].
Camley, Brian A. ;
Zhang, Yunsong ;
Zhao, Yanxiang ;
Li, Bo ;
Ben-Jacob, Eshel ;
Levine, Herbert ;
Rappel, Wouter-Jan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (41) :14770-14775
[8]   Periodic Migration in a Physical Model of Cells on Micropatterns [J].
Camley, Brian A. ;
Zhao, Yanxiang ;
Li, Bo ;
Levine, Herbert ;
Rappel, Wouter-Jan .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[9]   Plasticity of cell migration resulting from mechanochemical coupling [J].
Cao, Yuansheng ;
Ghabache, Elisabeth ;
Rappel, Wouter-Jan .
ELIFE, 2019, 8
[10]   Cell motility dependence on adhesive wetting [J].
Cao, Yuansheng ;
Karmakar, Richa ;
Ghabache, Elisabeth ;
Gutierrez, Edgar ;
Zhao, Yanxiang ;
Groisman, Alex ;
Levine, Herbert ;
Camley, Brian A. ;
Rappel, Wouter-Jan .
SOFT MATTER, 2019, 15 (09) :2043-2050