Supercapacitors Performance Evaluation

被引:883
作者
Zhang, Sanliang [1 ]
Pan, Ning [1 ]
机构
[1] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA
关键词
evaluation methods; inconsistencies; performance metrics; supercapacitors; ELECTROCHEMICAL ENERGY-STORAGE; GRAPHENE-BASED ULTRACAPACITORS; CARBON NANOTUBE ELECTRODES; HIGH-POWER; ACTIVATED CARBON; ASYMMETRIC SUPERCAPACITORS; IMPEDANCE SPECTROSCOPY; MICRO-SUPERCAPACITORS; COMPOSITE ELECTRODES; PSEUDOCAPACITIVE CONTRIBUTIONS;
D O I
10.1002/aenm.201401401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of a supercapacitor can be characterized by a series of key parameters, including the cell capacitance, operating voltage, equivalent series resistance, power density, energy density, and time constant. To accurately measure these parameters, a variety of methods have been proposed and are used in academia and industry. As a result, some confusion has been caused due to the inconsistencies between different evaluation methods and practices. Such confusion hinders effective communication of new research findings, and creates a hurdle in transferring novel supercapacitor technologies from research labs to commercial applications. Based on public sources, this article is an attempt to inventory, critique and hopefully streamline the commonly used instruments, key performance metrics, calculation methods, and major affecting factors for supercapacitor performance evaluation. Thereafter the primary sources of inconsistencies are identified and possible solutions are suggested, with emphasis on device performance vs. material properties and the rate dependency of supercapacitors. We hope, by using reliable, intrinsic, and comparable parameters produced, the existing inconsistencies and confusion can be largely eliminated so as to facilitate further progress in the field.
引用
收藏
页数:19
相关论文
共 154 条
[1]  
An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
[2]  
2-G
[3]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[4]  
[Anonymous], TEST PROC CAP ESR LE
[5]  
[Anonymous], 1968, 680453 SAE
[6]   CHARACTERIZATION BY IMPEDANCE SPECTROSCOPY OF A POLYMER-BASED SUPERCAPACITOR [J].
ARBIZZANI, C ;
MASTRAGOSTINO, M ;
MENEGHELLO, L .
ELECTROCHIMICA ACTA, 1995, 40 (13-14) :2223-2228
[7]   Polymer-based redox supercapacitors: A comparative study [J].
Arbizzani, C ;
Mastragostino, M ;
Meneghello, L .
ELECTROCHIMICA ACTA, 1996, 41 (01) :21-26
[8]   New trends in electrochemical supercapacitors [J].
Arbizzani, C ;
Mastragostino, M ;
Soavi, F .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :164-170
[9]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[10]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377