Improved corrosion performance of biodegradable magnesium in simulated inflammatory condition via drug-loaded plasma electrolytic oxidation coatings

被引:66
|
作者
Bordbar-Khiabani, Aidin [1 ,2 ]
Yarmand, Benyamin [1 ]
Sharifi-Asl, Samin [3 ,4 ]
Mozafari, Masoud [2 ]
机构
[1] MERC, Nanotechnol & Adv Mat Dept, Bioengn Res Grp, Tehran, Iran
[2] Iran Univ Med Sci, Fac Adv Technol Med, Dept Tissue Engn & Regenerat Med, Tehran, Iran
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Chevron ETC, Richmond, CA 94608 USA
关键词
Magnesium; Biodegradable implants; Plasma electrolytic oxidation; Drug-coated implants; Corrosion resistance; IN-VITRO BIOACTIVITY; ALLOY; RESISTANCE; SURFACE; BEHAVIOR; NANOPARTICLES; IMPLANTS; TITANIUM; RELEASE; SODIUM;
D O I
10.1016/j.matchemphys.2019.122003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnesium and its alloys are nowadays one of the most common biodegradable materials for orthopedic applications. Following the implantation of an orthopedic device, near the implant hydrogen peroxide and acidic environment are generated by an inflammatory reaction. In this study, a betamethasone sodium phosphate (BSP) layer as an anti-inflammatory drug was prepared on plasma electrolytic oxidation (PEO) coatings by a dipcoating process on magnesium alloys. X-ray diffraction (XRD), Fourier transformation infrared spectroscopy TIR), field emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM-EDX) and atomic force microscopy (AFM) were utilized for characterization studies. The results showed that the BSP layer successfully sealed the PEO coating. The corrosion resistance of the uncoated and coated samples was evaluated by electrochemical impedance spectroscopy (EIS) and potentioclynamic polarization tests in normal and simulated inflammatory conditions. During the simulated inflammation, the samples indicated an enhanced corrosion rate compared to that of normal condition. The results in the inflammatory environment showed that the corrosion resistance of the PEO/BSP coating was remarkably improved by two or three orders of magnitude, compared with uncoated Mg alloy and the PEO coating. Immersion tests show that the BSP layer significantly improves the bioactivity of PEO-coated Mg alloy in simulated body fluid (SEP). Moreover, the in vitro release behavior of drug loaded PEO coating was evaluated.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Oxidation and Hot Corrosion Performance of NiCoCrAlY Coatings Fabricated Via Electrolytic Codeposition
    Zhang, Ying
    Bates, Brian
    Steward, Jason
    Dryepondt, Sebastien
    OXIDATION OF METALS, 2019, 91 (1-2): : 95 - 112
  • [32] Plasma Electrolytic Oxidation (PEO) coatings on a zirconium alloy for improved wear and corrosion resistance
    Chen, Y.
    Nie, X.
    Northwood, D. O.
    TRIBOLOGY AND DESIGN, 2010, : 183 - 194
  • [33] Influence of Sodium Tungstate and Sealing Treatment on Corrosion Resistance of Coatings Formed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation
    Tu, Wenbin
    Cheng, Yulin
    Zhan, Tingyan
    Han, Junxiang
    Cheng, Yingliang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (11): : 10863 - 10881
  • [34] Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation
    Lim, Tae Seop
    Ryu, Hyun Sam
    Hong, Seong-Hyeon
    CORROSION SCIENCE, 2012, 62 : 104 - 111
  • [35] Tribological and Electrochemical Corrosion Properties of CNT-Incorporated Plasma Electrolytic Oxidation (PEO) Coatings on AZ80 Magnesium Alloy
    Kara, Rabia
    Zengin, Huseyin
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2022, 35 (07) : 1195 - 1206
  • [36] Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation on AZ31 Mg Alloy
    Rahmati, Maryam
    Raeissi, Keyvan
    Toroghinejad, Mohammad Reza
    Hakimizad, Amin
    Santamaria, Monica
    COATINGS, 2019, 9 (10)
  • [37] Corrosion behavior of ZrO2-TiO2 composite coatings produced on titanium alloy via plasma electrolytic oxidation
    Li, Hui
    Ma, Guofeng
    Wang, Ziyao
    SURFACE & COATINGS TECHNOLOGY, 2023, 469
  • [38] Effect of Various Additives on Performance of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy in the Phosphate Electrolytes
    Zhuang Junjie
    Song Renguo
    Li Hongxia
    Xiang Nan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (03): : 703 - 709
  • [39] Influence of glycerol on plasma electrolytic oxidation coatings evolution and on corrosion behaviour of coated AM50 magnesium alloy
    Jangde, Ashutosh
    Kumar, S.
    Blawert, C.
    CORROSION SCIENCE, 2019, 157 : 220 - 246
  • [40] Effects of ZnO nanoparticles addition to plasma electrolytic oxidation coatings on magnesium alloy: Microstructure, in vitro corrosion and antibacterial properties
    Liu, Deqiang
    Deng, Jintao
    Liu, Zhidan
    Jin, Jianbo
    Bi, Yifeng
    Yang, Junjie
    Zhou, Shengfeng
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (18) : 2897 - 2909