Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids

被引:75
作者
Borodin, Oleg [1 ]
Giffin, Guinevere A. [2 ,3 ,7 ]
Moretti, Arianna [2 ,3 ]
Haskins, Justin B. [4 ]
Lawson, John W. [5 ]
Henderson, Wesley A. [6 ]
Passerini, Stefano [2 ,3 ]
机构
[1] US Army, Electrochem Branch, Sensor & Elect Devices Directorate, Power & Energy Div,Res Lab, Adelphi, MD 20783 USA
[2] HIU, Electrochem 1, Helmholtzstr 11, D-89081 Ulm, Germany
[3] KIT, POB 3640, D-76021 Karlsruhe, Germany
[4] AMA Inc, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA
[5] NASA, Thermal Protect Mat Branch, Ames Res Ctr, Moffett Field, CA 94035 USA
[6] US Army, Res Off, POB 12211, Res Triangle Pk, NC 27709 USA
[7] Fraunhofer Inst Silicate Res ISC, Neunerpl 2, D-97082 Wurzburg, Germany
关键词
MOLECULAR-DYNAMICS SIMULATIONS; POLARIZABLE FORCE-FIELDS; BATTERIES NA+ SOLVATION; PHYSICOCHEMICAL PROPERTIES; TRANSFERENCE NUMBERS; ELECTRONIC-STRUCTURE; AB-INITIO; ELECTROLYTES; LI+; MIXTURES;
D O I
10.1021/acs.jpcc.8b05573
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Details of the lithium (Li+), sodium (Na+), magnesium (Mg2+), and zinc (Zn2+) cation coordination and electrolyte transport properties are examined using molecular dynamics (MD) simulations for the N-butyl-N-methylpyrro-lidinium bis(trifluoromethansulfonyl)imide (pyr(14)TFSI) ionic liquid (IL) doped with LiTFSI, NaTFSI, Mg(TFSI)(2), and Zn(TFSI)(2) salts. MD simulations are performed as a function of temperature using a polarizable force field (APPLE&P) that yields the Li+, Na+, Mg2+, and Zn2+ cation binding energies to the TFSI- anions in excellent agreement with quantum chemistry results. At 333 K, 4.7-4.8 TFSI- oxygen atoms from approximately three TFSI- anions coordinate Li+ and Na+, while Zn2+ and Mg2+ cations are instead coordinated by approximately six TFSI- oxygen atoms. Significant Na+ coordination with the fluorine atoms of the TFSI(- )anions is observed, unlike for Li+, Mg-2(+) and Zn2+. The cation-TFSI- binding motifs and the propensity of the salts to form large aggregates are temperature dependent with opposite trends noted for the electrolytes containing the Li and Na salts vs Mg salts. The MD simulations accurately predicted electrolyte transport properties including ionic conductivity, viscosity, and self-diffusion coefficients. A connection between the metal cation coordination, transport properties, and transport mechanisms is established for the different cations. The much longer cation-anion residence times for the divalent Zn2+- and Mg2+-containing electrolytes, as compared to those with monovalent Na+ and Li+, indicate the significantly slower desolvation kinetics of the divalent salts and the dominance of the vehicular cation transport mechanism relative to the anion exchange mechanism.
引用
收藏
页码:20108 / 20121
页数:14
相关论文
共 98 条
[1]   A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Zhang, Minghao ;
Borodin, Oleg ;
Gobrogge, Eric ;
Olguin, Marco ;
Ding, Michael S. ;
Gobet, Mallory ;
Greenbaum, Steve ;
Meng, Ying Shirley ;
Xu, Kang .
MATERIALS TODAY, 2018, 21 (04) :341-353
[2]   Synthesis of hydrophobic ionic liquids for electrochemical applications [J].
Appetecchi, Giovanni B. ;
Scaccia, Silvera ;
Tizzani, Cosimo ;
Alessandrini, Fabrizio ;
Passerini, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1685-A1691
[3]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/nmat2448, 10.1038/NMAT2448]
[4]   Electrochemical reduction of O2 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid containing Zn2+ cations: deposition of non-polar oriented ZnO nanocrystalline films [J].
Azaceta, Eneko ;
Marcilla, Rebeca ;
Mecerreyes, David ;
Ungureanu, Mariana ;
Dev, Apurba ;
Voss, Tobias ;
Fantini, Sebastian ;
Grande, Hans-Jurgen ;
Cabanero, German ;
Tena-Zaera, Ramon .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (29) :13433-13440
[5]   Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI)2 in Diglyme: Implications for Multivalent Electrolytes [J].
Baskin, Artem ;
Prendergast, David .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (07) :3583-3594
[6]   Structure and Energetics of Li+-(BF4-)n′ Li+-(FSI-)n′, and Li+-(TFSI-)n: Ab Initio and Polarizable Force Field Approaches [J].
Bauschlicher, Charles W., Jr. ;
Haskins, Justin B. ;
Bucholz, Eric W. ;
Lawson, John W. ;
Borodin, Oleg .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (36) :10785-10794
[7]   Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6293-6299
[8]   Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6279-6292
[9]   Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure Published as part of the Accounts of Chemical Research special issue "Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales" [J].
Borodin, Oleg ;
Ren, Xiaoming ;
Vatamanu, Jenel ;
Cresce, Arthur von Wald ;
Knap, Jaroslaw ;
Xu, Kang .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (12) :2886-2894
[10]   Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry [J].
Borodin, Oleg ;
Olguin, Marco ;
Ganesh, P. ;
Kent, Paul R. C. ;
Allen, Joshua L. ;
Henderson, Wesley A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (01) :164-175