Information propagation in stochastic networks

被引:3
作者
Juhasz, Peter L. [1 ]
机构
[1] 19 Szadelo St, H-1119 Budapest, Hungary
关键词
Information propagation; Complex system; Complex network; Stochastic model; SI model; Monte Carlo simulation;
D O I
10.1016/j.physa.2021.126070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a network-based stochastic information propagation model is developed. The information flow is modeled by a probabilistic differential equation system. The numerical solution of these equations leads to the expected number of informed nodes as a function of time and reveals the relationship between the degrees of the nodes and their reception time. The validity of the model is justified by Monte Carlo network simulation through the analysis of information propagation in scale-free and Erdos-Renyi networks. It has been found that the developed model provides more accurate results compared to the widely used network-based SI mean-field model, especially in sparse networks. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 14 条
[1]  
[Anonymous], GEN METHOD MOMENTS E
[2]  
[Anonymous], 2016, Network science
[3]  
[Anonymous], 1976, GRAPH THEORY APPL
[4]   Reaction-diffusion processes and metapopulation models in heterogeneous networks [J].
Colizza, Vittoria ;
Pastor-Satorras, Romualdo ;
Vespignani, Alessandro .
NATURE PHYSICS, 2007, 3 (04) :276-282
[5]   Scale-free topology of e-mail networks [J].
Ebel, H ;
Mielsch, LI ;
Bornholdt, S .
PHYSICAL REVIEW E, 2002, 66 (03) :1-035103
[6]  
Feller W, 2008, INTRO PROBABILITY TH, V2
[7]  
Gallager R. G., 2013, Stochastic processes: theory for applications
[8]   RANDOM GRAPHS [J].
GILBERT, EN .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04) :1141-1144
[9]  
Juhasz Peter L., 2020, INFORM PROPAGATION S
[10]   On the dynamics of deterministic epidemic propagation over networks [J].
Mei, Wenjun ;
Mohagheghi, Shadi ;
Zampieri, Sandro ;
Bullo, Francesco .
ANNUAL REVIEWS IN CONTROL, 2017, 44 :116-128