High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition

被引:1
|
作者
Amani, Matin [1 ,2 ]
Burke, Robert A. [3 ]
Ji, Xiang [4 ]
Zhao, Peida [1 ,2 ]
Lien, Der-Hsien [1 ,2 ]
Taheri, Peyman [1 ]
Ahn, Geun Ho [1 ,2 ]
Kirya, Daisuke [1 ,2 ]
Ager, Joel W., III [2 ]
Yablonovitch, Eli [1 ,2 ]
Kong, Jing [4 ]
Dubey, Madan [3 ]
Jayey, Ali [1 ,2 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[4] MIT, Elect Engn & Comp Sci, 77 Mass Ave, Cambridge, MA 02139 USA
关键词
transition metal dichalcogenide; MoS2; chemical vapor deposition; quantum yield; radiative lifetime; biexcitonic recombination; SPONTANEOUS EMISSION; BAND-GAP; PHOTOLUMINESCENCE; TRANSPORT; GRAPHENE; DEFECTS; STRAIN; ENERGY; STATES; FILMS;
D O I
10.1021/acsnano.6603443
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from similar to 0.1% in the as-grown case to similar to 30% after treatment, with enhancement factors ranging from 100 to 1500x depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5-10%). The discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.
引用
收藏
页码:6535 / 6541
页数:7
相关论文
共 50 条
  • [1] High optical quality of MoS2 monolayers grown by chemical vapor deposition
    Shree, Shivangi
    George, Antony
    Lehnert, Tibor
    Neumann, Christof
    Benelajla, Meryem
    Robert, Cedric
    Marie, Xavier
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaiser, Ute
    Urbaszek, Bernhard
    Turchanin, Andrey
    2D MATERIALS, 2020, 7 (01):
  • [2] Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition
    Luo, Siwei
    Cullen, Conor P.
    Guo, Gencai
    Zhong, Jianxin
    Duesberg, Georg S.
    APPLIED SURFACE SCIENCE, 2020, 508
  • [3] Resonant Raman Scattering Study of Strain and Defects in Chemical Vapor Deposition Grown MoS2 Monolayers
    Gontijo, Rafael N.
    Bunker, Nathaniel
    Graiser, Samarra L.
    Ding, Xintong
    Smeu, Manuel
    Elias, Ana Laura
    SMALL, 2024,
  • [4] Substrate-Induced Variances in Morphological and Structural Properties of MoS2 Grown by Chemical Vapor Deposition on Epitaxial Graphene and SiO2
    Sitek, Jakub
    Plocharski, Janusz
    Pasternak, Iwona
    Gertych, Arkadiusz P.
    McAleese, Clifford
    Conran, Ben R.
    Zdrojek, Mariusz
    Strupinski, Wlodek
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45101 - 45110
  • [5] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
    Ma, Jia-Jun
    Wu, Kang
    Wang, Zhen-Yu
    Ma, Rui-Song
    Bao, Li-Hong
    Dai, Qing
    Ren, Jin-Dong
    Gao, Hong-Jun
    CHINESE PHYSICS B, 2022, 31 (08)
  • [6] Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition
    Schmidt, Hennrik
    Wang, Shunfeng
    Chu, Leiqiang
    Toh, Minglin
    Kumar, Rajeev
    Zhao, Weijie
    Neto, A. H. Castro
    Martin, Jens
    Adam, Shaffique
    Oezyilmaz, Barbaros
    Eda, Goki
    NANO LETTERS, 2014, 14 (04) : 1909 - 1913
  • [7] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
    Xu, He-Ju
    Mi, Jian-Song
    Li, Yun
    Zhang, Bin
    Cong, Ri-Dong
    Fu, Guang-Sheng
    Yu, Wei
    CHINESE PHYSICS B, 2017, 26 (12)
  • [8] High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Mono layer MoS2 Transistors
    Liu, Bilu
    Chen, Liang
    Liu, Gang
    Abbas, Ahmad N.
    Fathi, Mohammad
    Zhou, Chongwu
    ACS NANO, 2014, 8 (05) : 5304 - 5314
  • [9] Optoelectronic properties of chemical vapor deposition grown monolayer MoS2 nanowires
    Pan, Cai
    Chen, Fei
    Su, Weitao
    Lu, Hongwei
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [10] Shape consistency of MoS2 flakes grown using chemical vapor deposition
    Wang, Lei
    Chen, Fei
    Ji, Xiaohong
    APPLIED PHYSICS EXPRESS, 2017, 10 (06)