Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction

被引:29
作者
Yu, Qing [1 ,2 ]
Guo, Chenxi [3 ]
Ge, Junyu [1 ]
Zhao, Yunxing [4 ]
Liu, Qing [5 ]
Gao, Pingqi [4 ]
Xiao, Jianping [3 ]
Li, Hong [1 ,6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Zhongshan Rd 457, Dalian 116023, Peoples R China
[4] Sun Yat Sen Univ, Sch Mat, Guangzhou 510275, Peoples R China
[5] Nanyang Technol Univ, Temasek Labs NTU, Singapore 637553, Singapore
[6] Nanyang Technol Univ, Ctr Micro Nanoelect NOVITAS, Sch Elect & Elect Engn, Singapore 639798, Singapore
[7] UMI, CINTRA CNRS NTU THALES, 3288 Res Techno Plaza, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Carbon dioxide reduction; Silver electrocatalyst; Plasma engineering; Subsurface oxygen; Porous nanostructure; CO2; REDUCTION; ELECTROCHEMICAL REDUCTION; CATALYST MORPHOLOGY; EFFICIENT; OXYGEN; PERFORMANCE; CONVERSION; ELECTROREDUCTION; NANOSTRUCTURES; MONOXIDE;
D O I
10.1016/j.jpowsour.2020.227846
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Morphology is crucial for catalyst performance, particularly in carbon dioxide (CO2) electroreduction because its selectivity over water reduction is very sensitive to catalyst surface morphology. Leveraging plasma engineering, we have developed a facile plasma activation process to control the morphology of silver electrocatalyst for CO2 reduction reaction (CO2RR). By controlling the oxygen plasma conditions, we could tune the silver morphology; and hence optimize the catalytic activity to achieve an unprecedentedly high performance for CO2RR. The optimized morphology, microrod array, exhibits a current density of similar to 10 mA cm(-2) at -0.50 V vs. RHE with significantly increased Faraday efficiencies over a very broad potential range (0.35-0.7 V vs. RHE). Our complementary theoretical study reveals that the significantly enhanced electrocatalytic activity and selectivity at decreased overpotential can be attributed to the stepped/kinked surface and subsurface oxygen, which increase the binding energy of CO intermediates without altering hydrogen binding energy; and thus lower the overpotential for CO2RR and increase the selectivity of CO over hydrogen. Our work provides a cost-effective and scalable technique for making catalysts for energy-efficient conversion of CO2 to CO.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis [J].
Ahn, Sang Hyun ;
Choi, Insoo ;
Park, Hee-Young ;
Hwang, Seung Jun ;
Yoo, Sung Jong ;
Cho, EunAe ;
Kim, Hyoung-Juhn ;
Henkensmeier, Dirk ;
Nam, Suk Woo ;
Kim, Soo-Kil ;
Jang, Jong Hyun .
CHEMICAL COMMUNICATIONS, 2013, 49 (81) :9323-9325
[2]  
de Rooij A., 1989, ESA Journal, V13, P20
[3]   Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy [J].
Dou, Shuo ;
Tao, Li ;
Wang, Ruilun ;
El Hankari, Samir ;
Chen, Ru ;
Wang, Shuangyin .
ADVANCED MATERIALS, 2018, 30 (21)
[4]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[5]   Kirkendall Effect vs Corrosion of Silver Nanocrystals by Atomic Oxygen: From Solid Metal Silver to Nanoporous Silver Oxide [J].
El Mel, Abdel-Aziz ;
Stephant, Nicolas ;
Molina-Luna, Leopoldo ;
Gautron, Eric ;
Haik, Yousef ;
Tabet, Nouar ;
Tessier, Pierre-Yves ;
Gautier, Romain .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (35) :19497-19504
[6]   Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2 [J].
Favaro, Marco ;
Xiao, Hai ;
Cheng, Tao ;
Goddard, William A., III ;
Yano, Junko ;
Crumlin, Ethan J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (26) :6706-6711
[7]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[8]   Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J].
Gao, Shan ;
Lin, Yue ;
Jiao, Xingchen ;
Sun, Yongfu ;
Luo, Qiquan ;
Zhang, Wenhua ;
Li, Dianqi ;
Yang, Jinlong ;
Xie, Yi .
NATURE, 2016, 529 (7584) :68-+
[9]   Vertical Silver@Silver Chloride Core-Shell Nanowire Array for Carbon Dioxide Electroreduction [J].
Ge, Junyu ;
Long, Jun ;
Sun, Zixu ;
Feng, Han ;
Hu, Jie ;
Koh, See Wee ;
Yu, Qing ;
Xiao, Jianping ;
Li, Hong .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6163-6169
[10]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913