Microstructure-sensitive investigation of magnesium alloy fatigue

被引:101
作者
Hazeli, K. [1 ]
Askari, H. [2 ]
Cuadra, J. [1 ]
Streller, F. [3 ]
Carpick, R. W. [4 ]
Zbib, H. M. [2 ]
Kontsos, A. [1 ]
机构
[1] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
[2] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
[3] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Fatigue; Twinning; Polycrystalline material; Crystal plasticity; Nondestructive evaluation; STRAIN-RATE SENSITIVITY; COPPER SINGLE-CRYSTALS; CYCLIC DEFORMATION; CRACK INITIATION; TEXTURE DEVELOPMENT; MG ALLOYS; POLYCRYSTALLINE COPPER; PLASTIC ANISOTROPY; ROOM-TEMPERATURE; ZIRCONIUM ALLOYS;
D O I
10.1016/j.ijplas.2014.10.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This article presents results relating macroscopic fatigue behavior to microplasticity, twinning activity, and early fatigue crack formation in wrought magnesium alloy specimens of the AZ series. Experimental data were obtained by testing standard-sized samples prepared to be also suitable for direct microstructural quantification using scanning electron microscopy and electron back scatter diffraction for texture, grain-scale observations and fractography, as well as surface morphology measurements using white-light interferometry. In addition, in situ nondestructive monitoring of the fatigue behavior was performed by using the Acoustic Emission method. To describe the plastic anisotropy, tension compression asymmetry, pseudoelasticity and their evolution as a function of fatigue loading, strain-control experiments of varying amplitude were conducted in several steps. Experimental measurements at different stages of fatigue life revealed repeatable occurrences of twinning detwinning, which is further shown to be coupled with reversible surface roughening. It was also found that although tension twinning contributes considerably to overall plasticity, it could also give rise to crack initiation towards the end of the fatigue life. The role of the reported microplasticity effects was additionally explored using a Continuum Dislocation Dynamics Viscoplastic Self-Consistent (CDD-VPSC) model for the first two cycles of the fatigue life. The intention of this section was to incorporate the effect of twinning detwinning into the CDD-VPSC model and subsequently to capture the experimental effects associated with changes in.the fatigue hysteresis observed between first and second cycle. These simulation results were consistent with the hypothesis that detwinning is responsible for the anomalous hardening behavior during the tensile part of the cyclic loading in the first few cycles of loading. This observation was confirmed for several imposed strain amplitudes and was achieved by properly defining an appropriate boundary condition that allows surface morphology changes. Furthermore, the experimental test plan allowed the quantification of the fatigue life in terms of hysteresis loop parameters including plastic/elastic energy, residual stiffness, as well as mean and extreme stresses. Finally, an energy-based relationship for the evaluation of fatigue behavior based on the Ellyin Kujawski formulation was found to provide life predictions that agree with obtained experimental information. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 76
页数:22
相关论文
共 99 条
[1]   Plastic strain localization and fatigue micro-crack formation in Hastelloy X [J].
Abuzaid, Wael ;
Sehitoglu, Huseyin ;
Lambros, John .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 561 :507-519
[2]   Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J].
Agnew, SR ;
Duygulu, Ö .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (06) :1161-1193
[3]   Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing [J].
Al-Maharbi, Majid ;
Karaman, Ibrahim ;
Beyerlein, Irene J. ;
Foley, David ;
Hartwig, K. Ted ;
Kecskes, Laszlo J. ;
Mathaudhu, Suveen N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (25-26) :7616-7627
[4]   Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys [J].
Ando, D. ;
Koike, J. ;
Sutou, Y. .
ACTA MATERIALIA, 2010, 58 (13) :4316-4324
[5]   Plastic strain localization in metals: origins and consequences [J].
Antolovich, Stephen D. ;
Armstrong, Ronald W. .
PROGRESS IN MATERIALS SCIENCE, 2014, 59 :1-160
[6]   A study of the hot and cold deformation of twin-roll cast magnesium alloy AZ31 [J].
Askari, Hesam ;
Young, John ;
Field, David ;
Kridli, Ghassan ;
Li, Dongsheng ;
Zbib, Hussein .
PHILOSOPHICAL MAGAZINE, 2014, 94 (04) :381-403
[7]   Twinning and the ductility of magnesium alloys Part I: "Tension" twins [J].
Barnett, M. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 464 (1-2) :1-7
[8]  
Barnett M.R., 2001, Journal of Light Metals, V1, P167, DOI DOI 10.1016/S1471-5317(01)00010-4
[9]   Yield point elongation due to twinning in a magnesium alloy [J].
Barnett, Matthew R. ;
Nave, Mark D. ;
Ghaderi, Alireza .
ACTA MATERIALIA, 2012, 60 (04) :1433-1443
[10]   Deformation microstructures and textures of some cold rolled Mg alloys [J].
Barnett, MR ;
Nave, MD ;
Bettles, CJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 386 (1-2) :205-211