Three-dimensional vortex structures in a rotating dipolar Bose-Einstein condensate

被引:21
|
作者
Kumar, Ramavarmaraja Kishor [1 ]
Sriraman, Thangarasu [2 ]
Fabrelli, Henrique [1 ]
Muruganandam, Paulsamy [2 ]
Gammal, Arnaldo [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[2] Bharathidasan Univ, Sch Phys, Palkalaiperur Campus, Tiruchirappalli 620024, Tamil Nadu, India
基金
巴西圣保罗研究基金会;
关键词
Bose-Einstein condensates; vortices; dipolar interaction; GROSS-PITAEVSKII EQUATION; NUMERICAL-METHODS; VORTICES; POTENTIALS; EFFICIENT; ALGORITHM; DYNAMICS; STATES;
D O I
10.1088/0953-4075/49/15/155301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study three-dimensional vortex lattice structures in purely dipolar Bose-Einstein condensate (BEC). By using the mean-field approximation, we obtain a stability diagram for the vortex states in purely dipolar BECs as a function of harmonic trap aspect ratio (lambda) and dipole-dipole interaction strength (D) under rotation. Rotating the condensate within the unstable region leads to collapse while in the stable region furnishes stable vortex lattices of dipolar BECs. We analyse stable vortex lattice structures by solving the three-dimensional time-dependent Gross-Pitaevskii equation in imaginary time. Further, the stability of vortex states is examined by evolution in real-time. We also investigate the distribution of vortices in a fully anisotropic trap by increasing eccentricity of the external trapping potential. We observe the breaking up of the condensate in two parts with an equal number of vortices on each when the trap is sufficiently weak, and the rotation frequency is high.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Three-dimensional vortex dynamics in Bose-Einstein condensates
    Caradoc-Davies, BM
    Ballagh, RJ
    Blakie, PB
    PHYSICAL REVIEW A, 2000, 62 (01): : 4
  • [32] Three-dimensional vortex dynamics in Bose-Einstein condensates
    Caradoc-Davies, B.M., 2000, American Inst of Physics, Woodbury (62):
  • [33] Band structures of a dipolar Bose-Einstein condensate in one-dimensional lattices
    Lin, YuanYao
    Lee, Ray-Kuang
    Kao, Yee-Mou
    Jiang, Tsin-Fu
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [34] Vortex structures in rotating Bose-Einstein condensates
    Matveenko, S. I.
    Kovrizhin, D.
    Ouvry, S.
    Shlyapnikov, G. V.
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [35] Three-dimensional solitons and vortices in dipolar Bose-Einstein condensates
    Zahznyak, Yu. A.
    Yakimenko, A. I.
    PHYSICS LETTERS A, 2008, 372 (16) : 2862 - 2866
  • [36] Anisotropic collapse in three-dimensional dipolar Bose-Einstein condensates
    Ilan, Boaz
    Taylor, Jessica
    PHYSICS LETTERS A, 2020, 384 (09)
  • [37] Vortex nucleation and quadrupole deformation of a rotating Bose-Einstein condensate
    Krämer, M
    Pitaevskii, L
    Stringari, S
    Zambelli, F
    LASER PHYSICS, 2002, 12 (01) : 113 - 120
  • [38] Vortex lattice of a Bose-Einstein condensate in a rotating anisotropic trap
    Oktel, M.Ö.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2004, 69 (02): : 236181 - 236181
  • [39] Vortex nucleation and array formation in a rotating Bose-Einstein condensate
    Tsubota, M
    Kasamatsu, K
    Ueda, M
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 126 (1-2) : 461 - 466
  • [40] Vortex stabilization in a small rotating asymmetric Bose-Einstein condensate
    Linn, M
    Niemeyer, M
    Fetter, AL
    PHYSICAL REVIEW A, 2001, 64 (02): : 1 - 11