Analytic Solutions to Coherent Control of the Dirac Equation

被引:10
作者
Campos, Andre G. [1 ]
Cabrera, Renan [1 ]
Rabitz, Herschel A. [1 ]
Bondar, Denys I. [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
FIELD; OBSERVABLES; MODEL;
D O I
10.1103/PhysRevLett.119.173203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple framework for Dirac spinors is developed that parametrizes admissible quantum dynamics and also analytically constructs electromagnetic fields, obeying Maxwell's equations, which yield a desired evolution. In particular, we show how to achieve dispersionless rotation and translation of wave packets. Additionally, this formalism can handle control interactions beyond electromagnetic. This work reveals unexpected flexibility of the Dirac equation for control applications, which may open new prospects for quantum technologies.
引用
收藏
页数:6
相关论文
共 71 条
  • [21] Exact closed-form solutions of the Dirac equation with a scalar exponential potential
    de Castro, AS
    Hott, M
    [J]. PHYSICS LETTERS A, 2005, 342 (1-2) : 53 - 59
  • [22] Bound states by a pseudoscalar Coulomb potential in one-plus-one dimensions
    de Castro, AS
    [J]. PHYSICS LETTERS A, 2003, 318 (1-2) : 40 - 47
  • [23] Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics
    Deffner, Sebastian
    [J]. NEW JOURNAL OF PHYSICS, 2015, 18
  • [24] Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving
    Deffner, Sebastian
    Jarzynski, Christopher
    del Campo, Adolfo
    [J]. PHYSICAL REVIEW X, 2014, 4 (02):
  • [25] Extremely high-intensity laser interactions with fundamental quantum systems
    Di Piazza, A.
    Mueller, C.
    Hatsagortsyan, K. Z.
    Keitel, C. H.
    [J]. REVIEWS OF MODERN PHYSICS, 2012, 84 (03) : 1177 - 1228
  • [26] Eleuch H, 2012, APPL MATH INFORM SCI, V6, P149
  • [28] Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
    Fillion-Gourdeau, F.
    Lorin, E.
    Bandrauk, A. D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 122 - 145
  • [29] Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling
    Fillion-Gourdeau, Francois
    Lorin, Emmanuel
    Bandrauk, Andre D.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (07) : 1403 - 1415
  • [30] Quantum simulation of the Dirac equation
    Gerritsma, R.
    Kirchmair, G.
    Zaehringer, F.
    Solano, E.
    Blatt, R.
    Roos, C. F.
    [J]. NATURE, 2010, 463 (7277) : 68 - U72