Lp-spectral multipliers for the hodge laplacian acting on 1-forms on the heisenberg group

被引:3
作者
Mueller, Detlef
Peloso, Marco M.
Ricci, Fulvio
机构
[1] Univ Kiel, D-24098 Kiel, Germany
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Heisenberg group; Hodge Laplacian; spectral multipliers; sub-Laplacian;
D O I
10.1007/s00039-007-0612-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, if Delta(1) is the Hodge Laplacian acting on differential 1- forms on the ( 2n + 1)- dimensional Heisenberg group, and if m is a Mihlin - Hormander multiplier on the positive half- line, with L-2- order of smoothness greater than n+ 1/2, then m(Delta(1)) is L-p- bounded for 1 < p < infinity. Our approach leads to an explicit description of the spectral decomposition of Delta(1) on the space of L-2- forms in terms of the spectral analysis of the sub- Laplacian L and the central derivative T, acting on scalar- valued functions.
引用
收藏
页码:852 / 886
页数:35
相关论文
共 12 条