Measuring thermodynamic length

被引:311
作者
Crooks, Gavin E. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevLett.99.100602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out of equilibrium. In this Letter, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.
引用
收藏
页数:4
相关论文
共 26 条
[1]   THERMODYNAMIC GEOMETRY AND THE METRICS OF WEINHOLD AND GILMORE [J].
ANDRESEN, B ;
BERRY, RS ;
GILMORE, R ;
IHRIG, E ;
SALAMON, P .
PHYSICAL REVIEW A, 1988, 37 (03) :845-848
[2]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[3]   GEOMETRICAL ASPECTS OF STATISTICAL-MECHANICS [J].
BRODY, D ;
RIVIER, N .
PHYSICAL REVIEW E, 1995, 51 (02) :1006-1011
[4]   ENTROPY DIFFERENTIAL METRIC, DISTANCE AND DIVERGENCE MEASURES IN PROBABILITY SPACES - A UNIFIED APPROACH [J].
BURBEA, J ;
RAO, CR .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (04) :575-596
[5]  
Callen H. B., 1985, THERMODYNAMICS INTRO, DOI 10.1119/1.19071
[6]  
Cover TM, 2006, Elements of Information Theory
[7]   A new metric for probability distributions [J].
Endres, DM ;
Schindelin, JE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (07) :1858-1860
[8]   RIEMANNIAN GEOMETRY AND THE THERMODYNAMICS OF MODEL MAGNETIC SYSTEMS [J].
JANYSZEK, H ;
MRUGALA, R .
PHYSICAL REVIEW A, 1989, 39 (12) :6515-6523
[9]   DIVERGENCE MEASURES BASED ON THE SHANNON ENTROPY [J].
LIN, JH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) :145-151
[10]   Wootters distance revisited: a new distinguishability criterium [J].
Majtey, A ;
Lamberti, PW ;
Martin, MT ;
Plastino, A .
EUROPEAN PHYSICAL JOURNAL D, 2005, 32 (03) :413-419