Entropy-Based Surface Electromyogram Feature Extraction for Knee Osteoarthritis Classification

被引:13
作者
Chen, Xin [1 ]
Chen, Jun [2 ,3 ]
Liang, Jie [1 ]
Li, Yurong [2 ,3 ]
Courtney, Carol Ann [4 ]
Yang, Yuan [4 ]
机构
[1] Xiamen Univ, Fuzhou Hosp 2, Dept Rehabil, Fuzhou 350007, Peoples R China
[2] Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou 350108, Peoples R China
[3] Fujian Key Lab Med Instrumentat & Pharmaceut Tech, Fuzhou 350108, Peoples R China
[4] Northwestern Univ, Feinberg Sch Med, Dept Phys Therapy & Human Movement Sci, Chicago, IL 60611 USA
关键词
Knee osteoarthritis; EMG; classification; entropy; computer-assist diagnosis; FUZZY C-MEANS; APPROXIMATE ENTROPY; COMPLEXITY; ALGORITHM; SELECTION; INDIVIDUALS; DIAGNOSIS; ARTIFACT; SIGNALS;
D O I
10.1109/ACCESS.2019.2950665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knee osteoarthritis (KOA) is one of the major causes of lower limb disability. This study aims to develop a computer-based approach to discriminate KOA individuals from controls by using entropy-based features, and therefore to provide an auxiliary, quantitative tool for KOA diagnosis. The surface EMG (sEMG) data were collected from the vastus lateralis, vastus medialis, biceps femoris, and semitendinosus when KOA participants and controls were walking barefoot on ground at a self-paced speed. We employed and compared three different entropy measures, including 1) approximate entropy, 2) sample entropy, 3) fuzzy entropy, for extracting KOA-related features from the sEMG signals for classification. The differences between the KOA group and healthy controls are primarily shown in the fuzzy entropy features extracted from the vastus medialis and biceps femoris muscle pair. Among all tested measures, the fuzzy entropy yielded the best performance in distinguishing KOA patients from controls, with 92% of accuracy, 91.43% of sensitivity and 93.33% of specificity. The results indicate that the fuzzy entropy method is applicable for extracting KOA-related features from sEMG, which can be developed as a sensitive metric for computer-assist diagnosis of knee osteoarthritis.
引用
收藏
页码:164144 / 164151
页数:8
相关论文
共 42 条
[1]   Predicting Object Size from Hand Kinematics: A Temporal Perspective [J].
Ansuini, Caterina ;
Cavallo, Andrea ;
Koul, Atesh ;
Jacono, Marco ;
Yang, Yuan ;
Becchio, Cristina .
PLOS ONE, 2015, 10 (03)
[2]   Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis [J].
Azami, Hamed ;
Fernandez, Alberto ;
Escudero, Javier .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (11) :2037-2052
[3]   Measuring complexity using FuzzyEn, ApEn, and SampEn [J].
Chen, Weiting ;
Zhuang, Jun ;
Yu, Wangxin ;
Wang, Zhizhong .
MEDICAL ENGINEERING & PHYSICS, 2009, 31 (01) :61-68
[4]  
Chen Y., 2018, ELECTROCHIM ACTA, V9, P131
[5]   Early diagnosis to enable early treatment of pre-osteoarthritis [J].
Chu, Constance R. ;
Williams, Ashley A. ;
Coyle, Christian H. ;
Bowers, Megan E. .
ARTHRITIS RESEARCH & THERAPY, 2012, 14 (03)
[6]   The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study [J].
Cross, Marita ;
Smith, Emma ;
Hoy, Damian ;
Nolte, Sandra ;
Ackerman, Ilana ;
Fransen, Marlene ;
Bridgett, Lisa ;
Williams, Sean ;
Guillemin, Francis ;
Hill, Catherine L. ;
Laslett, Laura L. ;
Jones, Graeme ;
Cicuttini, Flavia M. ;
Osborne, Richard ;
Vos, Theo ;
Buchbinder, Rachelle ;
Woolf, Anthony ;
March, Lyn .
ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) :1323-1330
[7]   Filtering the surface EMG signal: Movement artifact and baseline noise contamination [J].
De Luca, Carlo J. ;
Gilmore, L. Donald ;
Kuznetsov, Mikhail ;
Roy, Serge H. .
JOURNAL OF BIOMECHANICS, 2010, 43 (08) :1573-1579
[8]  
Favero M., 2015, RMD Open, V1, P1, DOI DOI 10.1136/RMD0PEN-2015-000062
[9]   Relevance of motion artifact in electromyography recordings during vibration treatment [J].
Fratini, Antonio ;
Cesarelli, Mario ;
Bifulco, Paolo ;
Romano, Maria .
JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 2009, 19 (04) :710-718
[10]   Predicting Knee Osteoarthritis [J].
Gardiner, Bruce S. ;
Woodhouse, Francis G. ;
Besier, Thor F. ;
Grodzinsky, Alan J. ;
Lloyd, David G. ;
Zhang, Lihai ;
Smith, David W. .
ANNALS OF BIOMEDICAL ENGINEERING, 2016, 44 (01) :222-233