In situ introduction of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3

被引:22
作者
Chen, Ai Bing [1 ]
Zhang, Wei Ping [1 ]
Liu, Yong [1 ]
Han, Xiu Wen [1 ]
Bao, Xin He [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
ag nanoparticles; mesoporous carbon; CMK-3; in situ synthesis;
D O I
10.1016/j.cclet.2007.05.038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An in situ reduction method has been developed to fabricate metallic Ag nanoparticles inside the channels of mesoporous carbon CMK-3. This approach combines function of the CMK-3 surface by oxidation using HNO3 with the subsequent absorption of Ag+. The resultant nanocomposite materials were characterized by nitrogen adsorption, X-ray diffraction, Auger electron spectroscopy and transmission electron microscopy. Compared with the conventional impregnation method, our approach shows that Ag nanoparticles of 2-4 nm can be uniformly incorporated into CMK-3. (c) 2007 Xin He Bao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
引用
收藏
页码:1017 / 1020
页数:4
相关论文
共 50 条
[31]   Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3 [J].
Chen, Gang ;
Zhang, Yao ;
Chen, Jian ;
Guo, Xinli ;
Zhu, Yunfeng ;
Li, Liquan .
NANOTECHNOLOGY, 2018, 29 (26)
[32]   Nickel Nanoparticles Supported on CMK-3 with Enhanced Catalytic Performance for Hydrogenation of Carbonyl Compounds [J].
Kim, Daeho ;
Kang, Hyuntae ;
Park, Hyesu ;
Park, Sungkyun ;
Park, Ji Chan ;
Park, Kang Hyun .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (21) :3469-3473
[33]   Chemically activated poly(furfuryl alcohol)-derived CMK-3 carbon catalysts for the oxidative dehydrogenation of ethylbenzene [J].
Janus, Paula ;
Janus, Rafal ;
Kustrowski, Piotr ;
Jarczewski, Sebastian ;
Wach, Anna ;
Silvestre-Albero, Ana M. ;
Rodriguez-Reinoso, Francisco .
CATALYSIS TODAY, 2014, 235 :201-209
[34]   Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures [J].
Tuan Ngoc Phan ;
Gong, Min Kyung ;
Thangavel, Ranjith ;
Lee, Yun Sung ;
Ko, Chang Hyun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 780 (90-97) :90-97
[35]   Structured Porous Carbon-Based Catalysts: Cu–ZnO/CMK-3 and Cu–CeO2/CMK-3 for Direct CO2 Conversion to Methanol [J].
Phantisa Limleamthong ;
Anurak Chuchuan ;
Nattanida Thepphankulngarm ;
Paisan Kongkachuichay .
Topics in Catalysis, 2023, 66 :1515-1526
[36]   Ni- and CuNi-modified activated carbons and ordered mesoporous CMK-3 for furfural hydrotreatment [J].
Jaatinen, Salla ;
Stekrova, Martina ;
Karinen, Reetta .
JOURNAL OF POROUS MATERIALS, 2018, 25 (04) :1147-1160
[37]   Enhanced degradation of bisphenol A over CFO/CMK-3 involved PMS activation: Insights into the synergistic effect between the spinel and mesoporous carbon [J].
Peng, Xuezhi ;
Yu, Shihui ;
Chen, Jianjian ;
Yang, Jiaojiao ;
Guo, Binyu ;
Zhou, Juan .
SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 307
[38]   Ni- and CuNi-modified activated carbons and ordered mesoporous CMK-3 for furfural hydrotreatment [J].
Salla Jaatinen ;
Martina Stekrova ;
Reetta Karinen .
Journal of Porous Materials, 2018, 25 :1147-1160
[39]   Alkene epoxidation by manganese(III) complexes immobilized onto nanostructured carbon CMK-3 [J].
Gaspar, H. ;
Andrade, M. ;
Pereira, C. ;
Pereira, A. M. ;
Rebelo, S. L. H. ;
Araujo, J. P. ;
Pires, J. ;
Carvalho, A. P. ;
Freire, C. .
CATALYSIS TODAY, 2013, 203 :103-110
[40]   Structured Porous Carbon-Based Catalysts: Cu-ZnO/CMK-3 and Cu-CeO2/CMK-3 for Direct CO2 Conversion to Methanol [J].
Limleamthong, Phantisa ;
Chuchuan, Anurak ;
Thepphankulngarm, Nattanida ;
Kongkachuichay, Paisan .
TOPICS IN CATALYSIS, 2023, 66 (19-20) :1515-1526