Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation

被引:39
作者
Nadin, Gregoire [1 ]
机构
[1] Ecole Normale Super, CNRS, Dept Math & Applicat, UMR8553, F-75230 Paris 05, France
关键词
Parabolic periodic operators; Reaction-diffusion equations; Maximum principles; Liouville type results; FRAGMENTED ENVIRONMENT MODEL; TRAVELING-WAVES; PRINCIPAL EIGENVALUE; LOGISTIC EQUATIONS; INDEFINITE WEIGHTS; ELLIPTIC-OPERATORS; POPULATION-MODELS; FRONTS; PROPAGATION;
D O I
10.1016/j.jde.2010.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the study of the periodic solutions and the entire solutions of the equation: partial derivative(t)u - del . (A(t, x)del u) + q(t, x) . del u = f (t, x, u) (1) where the diffusion matrix A, the advection term q and the reaction term f are periodic in t and x. We prove that the sign of the periodic principal eigenvalue associated with the linearized problem determines the existence and the uniqueness of the periodic solution. Introducing another eigenvalue, we are able to state uniqueness conditions for the entire solution and to derive the asymptotic behavior of the solutions of the associated Cauchy problem. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1288 / 1304
页数:17
相关论文
共 29 条
[1]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]  
Berestycki H, 2006, J EUR MATH SOC, V8, P195
[4]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[5]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[6]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[7]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[8]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[9]   Liouville-type results for semilinear elliptic equations in unbounded domains [J].
Berestycki, Henri ;
Hamel, Francois ;
Rossi, Luca .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :469-507
[10]   Asymptotic spreading in heterogeneous diffusive excitable media [J].
Berestycki, Henri ;
Hamel, Francois ;
Nadin, Gregoire .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2146-2189